$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출
Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection 원문보기

한국정보통신학회논문지 = Journal of the Korea Institute of Information and Communication Engineering, v.23 no.12, 2019년, pp.1542 - 1550  

조익성 (Department of Creative Integrated General Studies, Daegu University) ,  권혁숭 (Department of IT Engineering, Pusan National University)

초록
AI-Helper 아이콘AI-Helper

부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 퍼지(Fuzzy), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 오류 역전파 알고리즘을 이용한 부정맥 분류에 가장 많이 사용되고 있다. 딥러닝 모델심전도 신호에 적용하기 위해서는 적절한 모델선택과 파라미터를 최적에 가깝게 선택할 필요가 있다. 본 연구에서는 심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG신호에서 R파를 검출하고 QRS와 RR간격 세그먼트를 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 검증데이터로 모델을 평가하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 딥러닝 모델로 훈련 및 검증 정확도를 확인하였다. 성능 평가 결과 R파의 평균 검출 성능은 99.77%, PVC는 97.84의 평균 분류율을 나타내었다.

Abstract AI-Helper 아이콘AI-Helper

Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem...

주제어

표/그림 (11)

참고문헌 (11)

  1. S.-H. Liou, Y.-H. Wu, Y.-S. Syu, Y.-L. Gong, H.-C. Chen, and S.-T. Pan, "Real-time remote ECG signal monitor and emergency warning/positioning system on cellular phone," Intelligent Information and Database Systems, vol. 7198. Berlin, Germany: Springer-Verlag, 2012, pp. 336-345. 

  2. C.Ye, B.V.K. Kumar, M.T Coimbra, "Heartbeat classification using morphological and dynamic features of ECG signals," IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2930-2941, October. 2012. 

  3. M. J. Rooijakkers, C. Rabotti, H.D.Lau, S.G. Oei, J.W.M.Bergmans, M.Mischi, "Feasibility Study of a New Method for Low-Complexity Fetal Movement Detection From Abdominal ECG Recordings," IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 5, pp. 1361-1368, Sept. 2016. 

  4. K.Hanbay, "Deep neural network based approach for ECG classification using hybrid differential features and active learning," Institution of Engineering and Technology, vol. 13, no. 2, pp. 165 - 175, May. 2019. 

  5. W. Li, "Deep Intermediate Representation and In-Set Voting Scheme for Multiple-Beat Electrocardiogram Classification," IEEE Sensors Journal, vol.19, no.16, pp. 6895 - 6904, April. 2019. 

  6. P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T. Zhou, T. Li, J.S. Li, "High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal," IEEE Transactions on Biomedical Engineering, vol. 64, no. 1, pp. 78-86, Jan. 2017. 

  7. S. S. Xu, M.-W. Mak, C.-C. Cheung, "Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks," IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 4, pp. 1574 - 1584, Sept. 2019. 

  8. I. S. Cho, H. S.Kwon "Optimal Threshold Setting Method for R Wave Detection According to The Sampling Frequency of ECG Signals," Journal of Korea Institute of Information and Communication Engineering, vol. 21, no. 7, pp. 1420-1428, July 2017. 

  9. W. Li, J. Li, "Local Deep Field for Electrocardiogram Beat Classification," IEEE Sensors Journal, vol. 18, no. 4, pp. 1656 - 1664, Nov. 2019. 

  10. G. Wang, J. Hu, C. Li, B. Guo, F. Li, "Simultaneous Human Health Monitoring and Time-Frequency Sparse Representation Using EEG and ECG Signals," IEEE Access, vol. 7, pp. 85985 - 85994, June. 2019. 

  11. Q. Li, C. Rajagopalan, G.D. Clifford, "Ventricular Fibrillation and Tachycardia Classification Using a Machine Learning Approach," IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1607-1613, July 2013. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로