최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기공업화학 = Applied chemistry for engineering, v.30 no.6, 2019년, pp.652 - 658
엄성현 (고등기술연구원 플랜트공정개발센터) , 홍수직 (광주과학기술원 지구환경공학부, Ertl탄소비움연구센터) , 이재영 (광주과학기술원 지구환경공학부, Ertl탄소비움연구센터)
Direct hydrazine fuel cells (DHFCs) have been considered to be one of the promising fuel cells because hydrazine as a liquid fuel possesses several advantages such as no emission of CO2, relatively high energy density and catalytic activity over platinum group metal (PGM)-free anode catalysts. Judgi...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
E. H. Yu, U. Krewer, and K. Scott, Principles and materials aspects of direct alkaline alcohol fuel cells, Energies, 3, 1499-1528 (2010).
E. Antolini and E. R. Gonzalez, Alkaline direct alcohol fuel cells, J. Power Sources, 195, 3431-3450 (2010).
E. H. Yu, X. Wang, U. Krewer, L. Li, and K. Scott, Direct oxidation alkaline fuel cells: From materials to systems, Energy Environ. Sci., 5, 5668-5670 (2012).
D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375, 158-169 (2018).
G. E. Evans and K. V. Kordesch, Hydrazine-air fuel cells. Hydrazine-air fuel cells emerge from the laboratory, Science, 158, 1148-1152 (1967).
K. Tamura and T. Kahara, Exhaust gas compositions and fuel efficiencies of hydrazine-air fuel cells, J. Electrochem. Soc., 123, 776-780 (1976).
A. Serov and C. Kwak, Direct hydrazine fuel cells: A review, Appl. Catal. B, 98, 1-9 (2010).
K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki, and T. Kobayashi, Investigation of PEM type direct hydrazine fuel cell, J. Power Sources, 115, 236-242 (2003).
K. Asazawa, K. Yamada, H. Tanaka, A. Oka, M. Taniguchi, and T. Kobayashi, A platinum-free zero-carbon-emission easy fueling direct hydrazine fuel cell for vehicles, Angew. Chem. Int. Ed., 46, 8024-8027 (2007).
K. Asazawa, T. Sakamoto, S. Yamaguchi, K. Yamada, H. Fujikawa, H. Tanaka, and K. Oguro, Study of anode catalysts and fuel concentration on direct hydrazine alkaline anion-exchange membrane fuel cells, J. Electrochem. Soc., 156, B509-B512 (2009).
A. Serov, M. Padilla, A. J. Roy, P. Atanassov, T. Sakamoto, K. Asazawa, and H. Tanaka, Anode catalysts for direct hydrazine fuel cells: From laboratory test to an electric vehicle, Angew. Chem. Int. Ed., 53, 10336-10339 (2014).
J. Sanabria-Chinchilla, K. Asazawa, T. Sakamoto, K. Yamada, H. Tanaka, and P. Strasser, Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways, J. Am. Chem. Soc., 133, 5425-5431 (2011).
T. Sakamoto, D. Matsumura, K. Asazawa, U. Martinez, A. Serov, K. Artyushkova, P. Atanassov, K. Tamura, Y. Nishihata, and H. Tanaka, Operando XAFS study of carbon supported Ni, NiZn, and Co catalysts for hydrazine electrooxidation for use in anion exchange membrane fuel cells, Electrochim. Acta, 163, 116-122 (2015).
F. Yang, K. Cheng, G. Wang, and D. Cao, Flower-like Co nano-particles deposited on Ni foam substrate as efficient noble metal-free catalyst for hydrazine oxidation, J. Electroanal. Chem., 756, 186-192 (2015).
T. Asset, A. Roy, T. Sakamoto, M. Padilla, I. Matanovic, K. Artyushkova, A. Serov, F. Maillard, M. Chatenet, K. Asazawa, H. Tanaka, and P. Atanassov, Highly active and selective nickel molybdenum catalysts for direct hydrazine fuel cell, Electrochim. Acta, 215, 420-426 (2016).
T. Sakamoto, T. Masud, K. Yoshimoto, H. Kishi, S. Yamaguchi, D. Matsumura, K. Tamura, A. Hori, Y. Horiuchi, A. Serov, K. Artyushkova, P. Atanassov, and H. Tanaka, $NiO/Nb_2O_5/C$ hydrazine electrooxidation catalysts for anion exchange membrane fuel cells, J. Electrochem. Soc., 164, F22-F234 (2017).
J. Jeong, M. Choun, and J. Lee, Tree-bark-shaped N-doped porous carbon anode for hydrazine fuel cells, Angew. Chem., 129, 13698-13701 (2017).
Z. Lu, M. Sun, T. Xu, Y. Li, W. Xu, Z. Chang, Y. Ding, X. Sun, and L. Jiang, Superaerophobic electrodes for direct hydrazine fuel cells, Adv. Mater., 27, 2361-2366 (2015).
K. Akbar, J. H. Kim, Z. Lee, M. Kim, Y. Yi, and S.-H. Chun, Superaerophobic graphene nano-hills for direct hydrazine fuel cells, NPG Asia Mater., 9, e378 (2017).
W. X. Yin, Z. P. Li, J. K. Zhu, and H. Y. Qin, Effects of NaOH addition on performance of the direct hydrazine fuel cell, J. Power Sources, 182, 520-523 (2008).
Y. Meng, X. Zou, X. Huang, A. Goswami, Z. Liu, and T. Asefa, Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation, Adv. Mater., 26, 6510-6516 (2014).
S. Lee, M. Choun, Y. Ye, J. Lee, Y. Mun, E. Kang, J. Hwang, Y.-H. Lee, C.-H. Shin, S.-H. Moon, S.-K. Kim, E. Lee, and J. Lee, Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: Effects of pore size and doping-site position, Angew. Chem. Int. Ed., 54, 9230-9234 (2015).
T. Sakamoto, A. Serov, T. Masuda, M. Kamakura, K. Yoshimoto, T. Omata, H. Kishi, S. Yamaguchi, A. Hori, Y. Horiuchi, T. Terada, K. Artyushkova, P. Atanassov, and H. Tanaka, Highly durable direct hydrazine hydrate anion exchange membrane fuel cell, J. Power Sources, 375, 291-299 (2018).
Z. Lu, Y. Li, X. Lei, J. Liu, and X. Sun, Nanoarray based "superaerophobic" surfaces for gas evolution reaction electrodes, Mater. Horiz., 2, 294-298 (2015).
P. Argyropoulos, K. Scott, and W. M. Taama, Carbon dioxide evolution patterns in direct methanol fuel cells, Electrochim. Acta, 44, 3575-3584 (1999).
H. Yang, T. S. Zhao, and Q. Ye, In situ visualization study of $CO_2$ gas bubble behavior in DMFC anode flow fields, J. Power Sources, 139, 79-90 (2005).
K. Scott, P. Argyropoulos, P. Yiannopoulos, and W. M. Taama, Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds, J. Appl. Electrochem., 31, 823-832 (2001).
X. Chen, Y. Wu, B. Su, J. Wang, Y. Song, and L. Jiang, Terminating marine methane bubbles by superhydrophobic sponges, Adv. Mater., 24, 5884-5889 (2012).
J. Wang, Q. Yang, M. Wang, C. Wang, and L. Jiang, Rose petals with a novel and steady air bubble pinning effect in aqueous media, Soft Matter., 8, 2261-2266 (2012).
W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, A. Weis, A. Kaltenmaier, A. Leder, and H. F. Bohn, The Salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater, 22, 2325-2328 (2010).
B. Jeong, J. D. Ocon, and J. Lee, Electrode architecture in galvanic and electrolytic energy cells, Angew. Chem. Int. Ed., 55, 4870-4880 (2016).
T. J. Omasta, L. Wang, X. Peng, C. A. Lewis, J. R. Varcoe, and W. E. Mustain, Importance of balancing membrane and electrode water in anion exchange membrane fuel cells, J. Power Sources, 375, 205-213 (2018).
S. Uhm, H. J. Lee, and J. Lee, Understanding underlying processes in formic acid fuel cells, Phys. Chem. Chem. Phys., 11, 9326-9336 (2009).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.