$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CFD validation and grid sensitivity studies of full scale ship self propulsion 원문보기

International journal of naval architecture and ocean engineering, v.11 no.1, 2019년, pp.33 - 43  

Jasak, Hrvoje (University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture) ,  Vukcevic, Vuko (University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture) ,  Gatin, Inno (University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture) ,  Lalovic, Igor (Uljanik d.d.)

Abstract AI-Helper 아이콘AI-Helper

A comparison between sea trial measurements and full-scale CFD results is presented for two self-propelled ships. Two ships considered in the present study are: a general cargo carrier at Froude number $F_n=0:182$ and a car carrier at $F_n=0:254$. For the general cargo carrier,...

주제어

참고문헌 (45)

  1. Aulisa, E., Manservisi, S., Scardovelli, R., Zaleski, S., 2003. A geometrical area-preserving Volume-of-Fluid advection method. J. Comput. Phys. 192 (1) https://doi.org/10.1016/j.jcp.2003.07.003. 

  2. Batchelor, F.R., 1967. An Introduction to Fluid Dynamics. Cambridge University Press. 

  3. Beaudoin, M., Jasak, H., 2008. Development of generalized grid interface for turbomachinery simulations with OpenFOAM. In: Proceedings of the Open Source CFD International Conference. 

  4. Carrica, P., Castro, A., Stern, F., 2010. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids. J. Mar. Sci. Technol. 15, 316-330. https://doi.org/10.1007/s00773-010-0098-6. 

  5. Carrica, P.M., Fu, H., Stern, F., 2011. Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO Container Ship (KCS) model. Appl. Ocean Res. 33, 309-320. 

  6. Carrica, P.M., Mofidi, A., Martin, E., 2015. Progress toward Dire:t CFD simulation of Manoeuvres in waves. In: Proceedings of the MARINE 2015 Conference, pp. 327-338. 

  7. Castro, A., Carrica, P.M., Stern, F., 2011. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput. Fluids 51, 35-47. https://doi.org/10.1016/j.compfluid.2011.07.005. 

  8. Demirdzic, I., 2015. On the discretization of the diffusion term in finite-volume continuum mechanics. Numer. Heat Transf. Part B 68, 1-10. https://doi.org/10.1080/10407790.2014.985992. 

  9. Desjardins, O., Moureau, V., Pitsch, H., 2008. An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227 (18), 8395-8416. 

  10. Eca, L., Hoekstra, M., 2014. A procedure for the estimation of the numerical uncertainty of cfd calculations based on grid refinement studies. J. Comput. Phys. 262, 104-130. https://doi.org/10.1016/j.jcp.2014.01.006. 

  11. Ferziger, J.H., Peric, M., 1996. Computational Methods for Fluid Dynamics. Springer. 

  12. Huang, J., Carrica, P.M., Stern, F., 2007. Coupled ghost fluid/two-phase level set method for curvilinear body-fitted grids. Int. J. Numer. Meth. Fluids 44, 867-897. https://doi.org/10.1002/fld.1499. 

  13. Issa, R.I., 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40-65. 

  14. Jacobsen, N.G., Fuhrman, D.R., Fredsoe, J., 2012. A wave generation toolbox for the open-source CFD library: OpenFoam $^{(R)}$ . Int. J. Numer. Met. Fluids 70 (9), 1073-1088. https://doi.org/10.1002/fld.2726. 

  15. Jasak, H., 1996. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. thesis. Imperial College of Science, Technology & Medicine, London. 

  16. Jasak, H., Weller, H., Gosman, A., 1999. High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Met. Fluids 31, 431-449. 

  17. Jasak, H., Vukcevic, V., Gatin, I., 2015. Numerical simulation of wave loads on static offshore structures. In: CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering, pp. 95-105. 

  18. Juretic, F., 2017. cfMesh: Advanced Meshing Tool. cfMesh.com [Online; Accessed 22 February 2017]. 

  19. Kim, G.-H., Jun, J.-H., 2015. Numerical simulations for predicting resistance and self-propulsion performances of JBC using OpenFOAM and star-CCM+. In: Proceedings of the Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 3, pp. 285-296. 

  20. Krasilnikov, V., 2013. Self-propulsion RANS computations with a single-screw container ship. In: Proceedings of the Third International Symposium on Marine Propulsors, pp. 430-438. 

  21. Lalanne, B., Villegas, L.R., Tanguy, S., Risso, F., 2015. On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method. J. Comput. Phys. 301, 289-307. 

  22. Larsson, L., Stern, F., Visonneau, M., Hirata, N., Hino, T., Kim, J. (Eds.), 2015. Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 2. NMRI (National Maritime Research Institute), Tokyo, Japan. 

  23. Larsson, L., Stern, F., Visonneau, M., Hirata, N., Hino, T., Kim, J. (Eds.), 2015. Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 3. NMRI (National Maritime Research Institute), Tokyo, Japan. 

  24. Lloyd's Register, 2016. A Workshop on Ship Scale Hydrodynamic Computer Simulation. http://www.lr.org/en/news-and-insight/events/ship-scale-hydrodynamics-numerical-methods-workshop.aspx [Online; Accessed 22 February 2017]. 

  25. Menter, F.R., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the SST turbulence model. Turb. Heat Mass Transf. 4, 625-632. 

  26. Patankar, S.V., Spalding, D.B., 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf. 15, 1787-1806. 

  27. Ponkratov, D. (Ed.), 2017. Proceedings: 2016Workshop on Ship Scale Hydrodynamic Computer Simulations. Lloyd's Register, Southampton, United Kingdom. 

  28. Ponkratov, D., Zegos, C., 2014. Ship scale CFD self-propulsion simulation and its direct comparison with sea trial results. In: Proceedings of the International Conference on Computational and Experimental Marine Hydrodynamics (MARHY'14). 

  29. Ponkratov, D., Zegos, C., 2015. Validation of ship scale CFD self-propulsion simulation by the direct comparison with sea trial results. In: Proceedings of the Fourth International Symposium on Marine Propulsors. 

  30. Queutey, P., Visonneau, M., 2007. An interface capturing method for free-surface hydrodynamic flows. Comput. Fluids 36, 1481-1510. https://doi.org/10.1002/j.compfluid.2006.11.007. 

  31. R. MPEC.245(66), 2014. Guidelines on the Method of Calculation of the Attained EEDI for New Ships, Adopted on 2 March 2012. 

  32. Roenby, J., Bredmose, H., Jasak, H., 2016. A computational method for sharp interface advection. Open Sci. 3 (11) https://doi.org/10.1098/rsos.160405. 

  33. Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two - Phase Flows at High Phase Fractions. Ph.D. thesis. Imperial College of Science, Technology & Medicine, London. 

  34. Seb, B., 2017. Numerical Characterisation of a Ship Propeller. Master's thesis. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. 

  35. Shen, Z., Wan, D., Carrica, P.M., 2015. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering. Ocean Eng. 108, 287-306. https://doi.org/10.1016/j.oceaneng.2015.07.035. 

  36. Simonsen, C.D., Otzen, J.F., Joncquey, S., Stern, F., 2013. EFD and CFD for KCS heaving and pitching in regular head waves. J. Mar. Sci. Technol. 18, 435-459. https://doi.org/10.1007/s00773-013-0219-0. 

  37. Stern, F., Wilson, R.V., Coleman, H.W., Paterson, E.G., 2001. Comprehensive approach to verification and validation of CFD Simulations-Part 1: methodology and procedures. J. Fluid Eng. 123 (4), 793-802. https://doi.org/10.1115/1.1412235. 

  38. Tzabiras, G., Polyzos, S., Zarafonitis, G., 2009. Selfepropulsion simulations of passenger-Ferry ships with bow and stern propulsors. In: Proceedings of the 12th Numerical Towing Tank Symposium (NUTTS). 

  39. Ubbink, O., Issa, R.I., 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153, 26-50. 

  40. van Leer, B., 1977. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276-299. 

  41. Visonneau, M., Deng, G., Guilmineau, E., Queutey, P., Wackers, J., 2016. Local and global assessment of the flow around the Japan bulk carrier with and without energy saving devices at model and full scale. In: Proceedings of the 31st Symposium on Naval Hydrodynamics. 

  42. Vukcevic, V., 2016. Numerical Modelling of Coupled Potential and Viscous Flow for Marine Applications - in Preparation. Ph.D. thesis. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb. https://doi.org/10.13140/RG.2.2.23080.57605. 

  43. Vukcevic, V., Jasak, H., Gatin, I., 2017. Implementation of the ghost fluid method for free surface flows in polyhedral finite volume framework. Comput. Fluids 153, 1-19. https://doi.org/10.1016/j.compfluid.2017.05.003. 

  44. Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object oriented techniques. Comput. Phys. 12, 620-631. 

  45. Xing-Kaeding, Y., Gatchell, S., 2015. Resistance and selfepropulsion predictions for Japan bulk carrier without and with duct using the FreSCo+ code. In: Proceedings of the Tokyo 2015: a Workshop on CFD in Ship Hydrodynamics, vol. 3, pp. 291-296. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로