$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

상온 상압 조건에서 전기화학적 질소환원반응을 통한 암모니아 생산 연구 동향
Electrochemical Nitrogen Reduction Reaction to Ammonia Production at Ambient Condition 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.22 no.1, 2019년, pp.1 - 12  

이동규 (전남대학교신소재공학부) ,  심욱 (전남대학교신소재공학부)

초록
AI-Helper 아이콘AI-Helper

암모니아 생산은 이전부터 비료, 식량과 관련되어 많은 연구가 이루어져 왔는데, 최근 신재생 에너지에 대한 관심이 커짐에 따라 암모니아 또한 에너지로서 내연기관이나 연료전지로 활용이 기대되어 더 많은 연구가 활발히 이루어 지고 있다. 하지만 암모니아를 생성하기 위해서 하버-보쉬법을 사용하는데, 150-300기압과 $350-550^{\circ}C$ 이상의 높은 압력과 온도가 필요하므로 지구 에너지의 1-2%를 사용할 만큼 암모니아 생산에 많은 에너지가 소모되며, 주로 화석연료가 사용된다. 위와 같은 반응에 사용되는 에너지를 줄임으로 이산화탄소 배출량을 줄여 환경문제에도 대응할 수 있기 때문에 반응온도 및 압력을 줄이는 노력이 필요하다. 본 총설에서는 암모니아를 생산하기 위한 방법 중 특히 상온, 상압에서의 전기화학적 질소환원반응 결과들을 소개한다. 실험 결과뿐만 아니라 밀도범함수 계산을 통하여 전기화학적 질소환원반응 메커니즘 연구가 많이 되었으며, 더 많이 전기화학반응에 참여할 수 있도록 하는, 나노 와이어, 다공성 전극과 같은 나노구조화 전극설계에 대한 다양한 연구 결과들 또한 제시한다.

Abstract AI-Helper 아이콘AI-Helper

The reduction of nitrogen to produce ammonia has been attracting much attention as a renewable energy technology. Ammonia is the basis for many fertilizers and is also considered an energy carrier that can power internal combustion engines, diesel engines, gas turbines, and fuel cells. Traditionally...

주제어

표/그림 (12)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 마지막으로 밴드갭을 가지며 전도성도 우수하고 촉매로서 각광받고 있는 탄소 유도체 중 하나인 g-C3N4(graphitic carbon nitride)를 질소환원반응 광촉매로 사용한 연구이다. 특히 일반적인 g-C3N4이 아닌 질소원자 자리가 비어있는 V-g-C3N4를 사용함으로써 우수한 촉매특성을 질소환원반응에 적용하였으며, Fig.

가설 설정

  • 7 (a)에서 확인할 수 있다. NPC는 촉매 환원반응으로 주목받는 물질이며, zeolite imidazolate framework(ZIF) 의 구조와 sp3-C의 결함이 질소환원에 도움을 줄 것이라는 가정 하에 연구가 진행되었다. 전해질은 0.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
연료로서의 암모니아의 장점은 무엇인가? 암모니아는 비료의 원료로 쓰일 뿐만 아니라 연료로도 사용할 수 있다. 암모니아는 휘발유(Gasoline)보다 높은 110-130의 옥탄가를 가지고 있고, 에너지 밀도가 11.5MJ/L로 8.491MJ/L인 액체수소보다 높다. 또한 암모니아를 사용하는 연료전지(Fuel Cell)가 개발되었고, 비료의 주 재료이기 때문에 운반에 대한 인프라가 잘 갖추어져 있다.
RDS는 무엇인가? 2(b) 와 (c)가 각각 Distal Pathway와 Alternating Pathway의 과정으로 나누어서 밀도범함수 (Density Functional Theory, DFT) 계산을 시행한 결과 그래프이다. 이를 통하여 전체 반응 중 가장 큰 에너지가 필요한 구간을 알 수 있는데, 이를 PDS(potentialdetermining step) 혹은 RDS(rate-determining step)라고 부른다. Fig.
하버-보쉬법의 문제점은 무엇인가? 산업혁명 이후 많은 사람들이 암모니아 생성반응에 관심을 가지고 연구해 왔고, 1909년 하버-보쉬법이 발명된 이후로 산업화할 수 있게 되면서 암모니아를 대량 생산할 수 있게 되었다. 하지만 하버-보쉬 공정을 통한 암모니아 생산은 150-300기압과 350-550℃의 높은 압력과 온도가 필요하기 때문에 암모니아를 생산하기 위해 사용되는 에너지는 지구 총 에너지의 1% 이상을 차지하고 있다.4-7) 또한 이러한 방법을 통한 생산 과정 중 다량의 이산화탄소를 발생시키기 때문에 많은 환경문제를 초래하기도 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (61)

  1. C. Zamfirescu and I. Dincer, 'Ammonia as a green fuel and hydrogen source for vehicular applications' 90, 729-737 (2009). 

  2. R. Lan and S. Tao, 'Ammonia as a Suitable Fuel for Fuel Cells' 2 (2014). 

  3. S. Giddey, S. P. S. Badwal, C. Munnings and M. Dolan, 'Ammonia as a Renewable Energy Transportation Media' American Chemical Society, 5 10231-10239 (2017). 

  4. F. Haber, 'The synthesis of ammonia from its elements. Nobel Prize Lecture 1918' (1920). 

  5. K. Tamaru, 'The History of the Development of Ammonia Synthesis' Springer US, 1-18 (1991). 

  6. J. M. Modak, 'Haber process for ammonia synthesis' 769-77 (2002). 

  7. M. Appl, 'Ammonia' Wiley-VCH, (2006). 

  8. T. Murakami, T. Nohira, Y. H. Ogata and Y. Ito, 'Electrolytic Ammonia Synthesis in Molten Salts under Atmospheric Pressure Using Methane as a Hydrogen Source' 8 D12-D14 (2005). 

  9. B. H. Wang, J. D. Wang, R. Liu, Y. H. Xie and Z. J. J. J. o. S. S. E. Li, 'Synthesis of ammonia from natural gas at atmospheric pressure with doped ceria-Ca3(PO4)2-K3PO4 composite electrolyte and its proton conductivity at intermediate temperature' 11 27-31 (2007). 

  10. R.-Q. Liu, Y.-H. Xie, J.-D. Wang, Z.-J. Li and B.-H. Wang, 'Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2- ${\delta}$ (MLa, Y, Gd, Sm) and their proton conduction at intermediate temperature' 177 73-76 (2006). 

  11. C. Guo, J. Ran, A. Vasileff and S.-Z. Qiao, 'Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions' The Royal Society of Chemistry, 11 45-56 (2018). 

  12. Y. Abghoui and E. Skulasson, 'Transition Metal Nitride Catalysts for Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions' 51 1897-1906 (2015). 

  13. Y. Abghoui, A. L. Garden, J. G. Howalt, T. Vegge and E. Skulason, 'Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments' American Chemical Society, 6 635-646 (2016). 

  14. Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, 'A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces' American Chemical Society, 140 1496-1501 (2018). 

  15. S. Giddey, S. P. S. Badwal and A. Kulkarni, 'Review of electrochemical ammonia production technologies and materials' 38 14576-14594 (2013). 

  16. V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros and M. Stoukides, 'Progress in the Electrochemical Synthesis of Ammonia' 286 2-13 (2017). 

  17. B. M. Lindley, A. M. Appel, K. Krogh-Jespersen, J. M. Mayer and A. J. M. Miller, 'Evaluating the Thermodynamics of Electrocatalytic N2 Reduction in Acetonitrile' American Chemical Society, 1 698-704 (2016). 

  18. P. Vanysek, 'Electrochemical series' CRC handbook of chemistry and physics, 8 (2000). 

  19. M. A. Shipman and M. D. Symes, 'Recent progress towards the electrosynthesis of ammonia from sustainable resources' 286 57-68 (2017). 

  20. J.-H. Zhou and Y.-W. Zhang, 'Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective' The Royal Society of Chemistry, 3 591-625 (2018). 

  21. J. Zhao, J. Zhao and Q. Cai, 'Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis' The Royal Society of Chemistry, 20 9248-9255 (2018). 

  22. X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, 'Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst' The Royal Society of Chemistry, 54 8474-8477 (2018). 

  23. K. J. Uk Sim, Seungtaeg Oh, Donghyuk Jeong, Junsang Moon, Jihun Oh, and Ki Tae Nam, 'Hydrogen Production by Electrolysis and Photoelectrochemical System' (2014). 

  24. J. H. Montoya, C. Tsai, A. Vojvodic and J. K. Norskov, 'The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations' 8 2180-2186 (2015). 

  25. S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, 'Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions' 29 1700001 (2017). 

  26. D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang and X.-B. Zhang, 'Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle' 29 1604799 (2017). 

  27. M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, 'Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages' 49 316-323 (2018). 

  28. J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, 'Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using a ${\gamma}$ -Fe2O3 Catalyst' American Chemical Society, 5 10986-10995 (2017). 

  29. S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, 'Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst' 56 2699-2703 (2017). 

  30. K. Kim, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, 'Electrochemical Synthesis of Ammonia from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure' 163 F1523-F1526 (2016). 

  31. X. Zhang, R.-M. Kong, H. Du, L. Xia and F. Qu, 'Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions' The Royal Society of Chemistry, 54 5323-5325 (2018). 

  32. X. Yang, J. Nash, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J. G. Chen, Y. Yan and B. Xu, 'Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles' American Chemical Society, 140 13387-13391 (2018). 

  33. Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, 'Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon' American Chemical Society, 8 1186-1191 (2018). 

  34. C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, 'An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions' 57 6073-6076 (2018). 

  35. N. Furuya and H. Yoshiba, 'Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fephthalocyanine' 263 171-174 (1989). 

  36. N. Furuya and H. Yoshiba, 'Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst' 291 269-272 (1990). 

  37. A. Tsuneto, A. Kudo and T. Sakata, 'Lithium-mediated electrochemical reduction of high pressure N2 to NH3' 367 183-188 (1994). 

  38. V. Kordali, G. Kyriacou and C. Lambrou, 'Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell' The Royal Society of Chemistry, 1673-1674 (2000). 

  39. F. Koleli and T. Ropke, 'Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode' 62 306-310 (2006). 

  40. R. Lan, J. T. S. Irvine and S. Tao, 'Synthesis of ammonia directly from air and water at ambient temperature and pressure' The Author(s), 3 1145 (2013). 

  41. R. Lan and S. Tao, 'Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte' The Royal Society of Chemistry, 3 18016-18021 (2013). 

  42. K. Kugler, M. Luhn, J. A. Schramm, K. Rahimi and M. Wessling, 'Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis' The Royal Society of Chemistry, 17 3768-3782 (2015). 

  43. K. Kim, N. Lee, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, 'Communication-Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure' 163 F610-F612 (2016). 

  44. D. Yang, T. Chen and Z. Wang, 'Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm' The Royal Society of Chemistry, 5 18967-18971 (2017). 

  45. M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan and Q. Jiang, 'Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions' 29 1606550 (2017). 

  46. S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, 'Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions' 29 1700001 (2017). 

  47. S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, 'Room-Temperature Electrocatalytic Synthesis of NH3 from H2O and N2 in a Gas-Liquid-Solid Three-Phase Reactor' American Chemical Society, 5 7393-7400 (2017). 

  48. G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu and H. Wang, 'Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+Incorporation Strategy' American Chemical Society, 139 9771-9774 (2017). 

  49. X. Zhao, F. Yin, N. Liu, G. Li, T. Fan and B. J. J. o. M. S. Chen, 'Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure' 52 10175-10185 (2017). 

  50. F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang and D. R. MacFarlane, 'Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids' The Royal Society of Chemistry, 10 2516-2520 (2017). 

  51. H.-M. Liu, S.-H. Han, Y. Zhao, Y.-Y. Zhu, X.-L. Tian, J.-H. Zeng, J.-X. Jiang, B. Y. Xia and Y. Chen, 'Surfactantfree atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction' The Royal Society of Chemistry, 6 3211-3217 (2018). 

  52. B. L. Sheets and G. G. Botte, 'Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte' The Royal Society of Chemistry, 54 4250-4253 (2018). 

  53. M. Nazemi and M. A. El-Sayed, 'Electrochemical Synthesis of Ammonia from N2 and H2O under Ambient Conditions Using Pore-Size-Controlled Hollow Gold Nanocatalysts with Tunable Plasmonic Properties' American Chemical Society, 9 5160-5166 (2018). 

  54. L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, 'Efficient Electrochemical N2 Reduction to NH3 on MoN Nanosheets Array under Ambient Conditions' American Chemical Society, 6 9550-9554 (2018). 

  55. Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang, F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A. Cullen, H. M. Meyer, B. G. Sumpter and A. J. Rondinone, 'A physical catalyst for the electrolysis of nitrogen to ammonia' 4 (2018). 

  56. Y. Yao, Q. Feng, S. Zhu, J. Li, Y. Yao, Y. Wang, Q. Wang, M. Gu, H. Wang, H. Li, X.-Z. Yuan and M. Shao, 'Chromium Oxynitride Electrocatalysts for Electrochemical Synthesis of Ammonia Under Ambient Conditions' 0 1800324 (2018). 

  57. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, 'Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies' 30 1800191 (2018). 

  58. M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang and D. R. MacFarlane, 'Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon' The Author(s), 7 11335 (2016). 

  59. H. Hirakawa, M. Hashimoto, Y. Shiraishi and T. Hirai, 'Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide' American Chemical Society, 139 10929-10936 (2017). 

  60. H. Li, J. Shang, Z. Ai and L. Zhang, 'Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets' American Chemical Society, 137 6393-6399 (2015). 

  61. G. Dong, W. Ho and C. Wang, 'Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies' The Royal Society of Chemistry, 3 23435-23441 (2015). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로