$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Characterization of the Transglycosylation Reaction of 4-α-Glucanotransferase (MalQ) and Its Role in Glycogen Breakdown in Escherichia coli 원문보기

Journal of microbiology and biotechnology, v.29 no.3, 2019년, pp.357 - 366  

Nguyen, Dang Hai Dang (Department of Foodservice Management and Nutrition, Sangmyung University) ,  Park, Sung-Hoon (Research Institute of Food and Biotechnology, SPC Group) ,  Tran, Phuong Lan (Department of Food Technology, An Giang University) ,  Kim, Jung-Wan (Department of Biology, University of Incheon) ,  Le, Quang Tri (Faculty of Food Science, Tien Giang University) ,  Boos, Winfried (Department of Biology, University of Konstanz) ,  Park, Jong-Tae (Department of Food Science and Technology, Chungnam National University)

Abstract AI-Helper 아이콘AI-Helper

We first confirmed the involvement of MalQ (4-${\alpha}$-glucanotransferase) in Escherichia coli glycogen breakdown by both in vitro and in vivo assays. In vivo tests of the knock-out mutant, ${\Delta}malQ$, showed that glycogen slowly decreased after the stationary phase compa...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • To investigate the action of MalP and GlgP toward glc4, GlgP-limit dextrin was incubated with a mixture of MalP/ GlgX or GlgP/GlgX. Both of the mixtures of MalP or GlgP with GlgX produced significant amounts of glc-1-P in which the rate of glc-1-P formation was higher in the mixture of GlgP/GlgX (1.

이론/모형

  • Reducing sugars were detected using the naphtol–sulfuric acid (H2SO4) method.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Carlson GM, Dienel GA, Colbran RJ. 2018. Novel insight into brain glycogen metabolism. J. Biol. Chem. 293: 7078-7088 

  2. Romeo T, Black J, Preiss J. 1990. Genetic regulation of glycogen biosynthesis in Escherichia coli: in vivo effects of the catabolite repression and stringent response systems in glg gene expression. Curr. Microbiol. 21: 131-137. 

  3. Boos W, Shuman H. 1998. Maltose/maltodextrin system of Escherichia coli: transport, metabolism and regulation. Microbiol. Mol. Biol Rev. 62: 204-229. 

  4. Ball SG, Morell MK. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 54: 207-233. 

  5. Wilson WA, Roach PJ, Montero M, Fernandez EB, Munoz FJ, Eydallin G, et al. 2010. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol. Rev. 34: 952-985 

  6. Park KH. 2015. Roles of enzymes in glycogen metabolism and degradation in Escherichia coli. J. Appl. Glycosci. 62: 37-45. 

  7. Jo HJ, Park SH, Jeong HG, Kim JW, Park JT. 2015. Vibrio vulnificus glycogen branching enzyme preferentially transfers very short chains: N1 domain determines the chain length transferred. FEBS Lett. 589: 1089-1094. 

  8. Yoo SH, Lee BH, Moon YY, Spalding MH, Jane JL. 2014. Glycogen synthase isoforms in Synechocystis sp. PCC6803: identification of different roles to produce glycogen by targeted mutagenesis. PLoS One 9: e91524. 

  9. Chang DE, Smalley DJ, Tucker DL, Leatham, MP, Norris WE, Stevenson SJ, et al. 2004. Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl. Acad. Sci. USA 101: 7427-7432. 

  10. Bonafonte MA, Solano C, Sesma B, Alvarez M, Montuenga L, Garci-Ros D, et al. 2000. The relationship between glycogen synthesis, biofilm formation and virulence in Salmonela enteritidis. FEMS Microbiol. Lett. 191: 31-36. 

  11. Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MP, et al. 2008. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect. Immun. 76: 2531-2540. 

  12. Bourassa L, Camilli A. 2009. Glycogen contributes to the environmental persistence and transmission of Vibrio cholera. Mol. Microbiol. 72: 124-138. 

  13. Cenci U, Nitschle F, Steup M, Minassian BA, Colleoni C Ball SG. 2014. Transition from glycogen to starch metabolism in archaeplastida. Cell 19: 18. 

  14. Park JT, Shim JH, Tran PL, Hong IH, Yong HU, Oktavina EF, et al. 2011. Role of maltose enzymes in glycogen synthesis by Escherichia coli. J. Bacteriol. 193: 2517-2526. 

  15. Song HN, Jung TY, Park JT, Park BC, Myung PK, Boos W, et al. 2010. Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX. Proteins 78: 1847-1855. 

  16. Dauvillee D, Kinderf IS, Li Z, Hashemi BK, Samuel MS, Rampling L, et al. 2005. Role of the Escherichia coli glgX gene in glycogen metabolism. J. Bacteriol. 187: 1465-1473. 

  17. Hwang SM, Choi KH, Kim JU, Cha JH. 2013. Biochemical characterization of 4- ${\alpha}$ -glucanotransferase from Saccharophagus degradans 2-40 and its potential role in glycogen degradation. FEMS Microbiol. Lett. 344: 145-151. 

  18. Almagro G, Viale AM, Montero M, Rahimpour M, Munoz FJ, Baroja-Fernandez E, et al. 2015. Comparative genomic and phylogenetic analyses of gammaproteobacterial glg genes traced the origin of the Escherichia coli glycogen glgBXCAP operon to the last common ancestor of the sister orders Enterobacteriales and Pasteurellales. PLoS One 10: e0115516. 

  19. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al. 2014. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic. Acids Res. 42: D459-D471. 

  20. Schinzel R, Nidetzky B. 1999. Bacterial ${\alpha}$ -glucan phosphorylases. FEMS Microbiol Lett. 171: 73-79. 

  21. Nguyen DHD, Park JT, Shim JH, Tran PL, Oktavina EF, Nguyen TLH, et al. 2014. Reaction kinetics of substrate transglycosylation catalyzed by TreX of Sulfolobus solfataricus and effects on glycogen breakdown. J. Bacteriol. 196: 1941-1949. 

  22. Park SH, Na YR, Kim JW, Kang SD, Park KH. 2018. Properties and applications of starch modifying enzymes for use in the baking industry. Food Sci. Biotechnol. 27: 299-312. 

  23. Henrissat B, Deleury E, Coutinho PM. 2002. Glycogen metabolism loss: a common marker of parasitic behavior in bacteria? Trends Genet. 18: 437-440. 

  24. Shim JH, Park JT, Hong JS, Kim KW, Kim MJ, Auh JH et al. 2009. Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J. Bacteriol. 191: 4835-4844. 

  25. Yanez MA, Catalan V, Apraiz D, Figueras MJ, Martinez-Murcia AJ. 2003. Phylogenetic analysis of the genus Aeromonas based on gyrB gene sequences. Int. J. System Evol. Microbiol. 53: 875-883. 

  26. Yoon YJ, Im KH, Koh YH, Kim SK, Kim JW. 2003. Genotyping of six pathogenic Vibrio species based on RFLP of 16S rDNAs for rapid identification. J. Microbiol. 41: 312-319. 

  27. Lim MS, Lee MH, Lee JH, Ju HM, Park NY, Jeong HS, et al. 2005. Identification and characterization of Vibrio vulnificus malPQ operon. J. Microbiol. Biotechnol. 15: 616-625. 

  28. Lawrence JG. 2002. Shared strategies in gene organization among prokaryotes and eukaryotes. Cell 110: 407-413. 

  29. Price MN, Huang KT, Arkin AP, Alm EJ. 2005. Operon formation is driven by co-regulation and not by horizontal gene transfer. Genome Res. 809: 15: 809-819. 

  30. Price MN, Arkin AP, Alm EJ. 2006. The life-cycle of operons. PLoS Genet. 2: e96. 

  31. Shelburne SA, Keith DB, Davenport MT, Beres SB, Carroll RK, Musser JM. 2009. Contribution of AmyA, an extracellular ${\alpha}$ -glucan degrading enzyme, to group A streptococcal hostpathogen interaction. Mol. Microbiol. 74: 159-174. 

  32. Shelburn SA, Sumby P, Sitkiewicz I, Okorafor N, Granville C, Patel P et al. 2006. Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infect. Immun. 74: 4605-4614. 

  33. McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA. 2005. Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology 151: 3969-3977. 

  34. Abbott DW, Higgins MA, Hyrnuik S, Pluvinage B, Bueren ALvan, Boraston AB. 2010. The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol. Microbiol. 77: 183-199. 

  35. Alteri CJ, Smith SN, Mobley LT. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 5: e1000448. 

  36. Lu C, Lei L, Peng B, Tang L, Ding H, Gong S, Li Z, et al. 2013. Chlamydia trachomatis GlgA is secreted into host cell cytoplasm. PLoS One 8: e68764. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로