$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고급 모델링 반복 재구성법(ADMIRE)이 CT 영상의 화질에 미 치는 영향: 흉부 비조영 CT에서
The Effect of Advanced Modeling Iterative Reconstruction(ADMIRE) on the Quality of CT Images : Non-contrast CT in Chest 원문보기

한국방사선학회 논문지 = Journal of the Korean Society of Radiology, v.13 no.2, 2019년, pp.159 - 168  

이상헌 (동의대학교 대학원 보건의과학과) ,  이효영 (동의대학교 대학원 보건의과학과)

초록
AI-Helper 아이콘AI-Helper

흉부 CT스캔에서 공기, 지방, 근육, Background의 HU, 잡음 그리고 신호 대 잡음비의 변화를 측정해 영상 화질에 미치는 지멘스 ADMIRE(Advanced Modeled Iterative Reconstruction)의 영향을 조사했다. 실험 결과에 따르면 ADMIRE Strength가 커질수록 잡음은 감소하고 신호는 증가하여, 결론적으로 신호 대 잡음비는 증가하는 것으로 나타났다. ADMIRE는 기존 영상 재구성 알고리즘인 FBP와 비교하여 잡음을 28~61%까지 줄일 수 있으며, 신호 대 잡음비는 16~100%까지 향상시킨다.

Abstract AI-Helper 아이콘AI-Helper

We examined the effect of Siemens ADMIRE (Advanced Modeled Iterative Reconstruction) on image quality by measuring changes in HU, noise, and SNR of background air, fat, muscle, and background signals on a chest CT scan. Experimental results show that as the ADMIRE Strength increases, the noise decre...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구는 Siemens 사의 ADMIRE가 영상의 화질에 미치는 영향을 알아보기 위하여 흉부 비조영CT 검사에서 ADMIRE Strength에 의한 Signal, Noise 그리고 SNR(signal-to-noise ratio)의 변화를 정량적으로 비교 분석하여 어떠한 차이가 있는지 알아보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
ADMIRE Strength가 커질수록 나타나는 현상은 무엇인가? 흉부 CT스캔에서 공기, 지방, 근육, Background의 HU, 잡음 그리고 신호 대 잡음비의 변화를 측정해 영상 화질에 미치는 지멘스 ADMIRE(Advanced Modeled Iterative Reconstruction)의 영향을 조사했다. 실험 결과에 따르면 ADMIRE Strength가 커질수록 잡음은 감소하고 신호는 증가하여, 결론적으로 신호 대 잡음비는 증가하는 것으로 나타났다. ADMIRE는 기존 영상 재구성 알고리즘인 FBP와 비교하여 잡음을 28~61%까지 줄일 수 있으며, 신호 대 잡음비는 16~100%까지 향상시킨다.
필터보정 역 투영법(filtered back projection, FBP)의 특징은 무엇인가? 필터보정 역 투영법(filtered back projection, FBP)은 CT에서 영상 재구성의 표준 알고리즘이었지만, 줄무늬 인공물(streak artifact)을 생성하고 낮은 선량에서 영상의 잡음(noise)이 현저하게 증가하는 단점이 있다.[1] 최근 컴퓨터 기술의 진보로 영상의 인공물(artifact) 및 잡음을 줄이는 목적으로 고안된 반복적 재구성법(Iterative Reconstruction, IR)이 임상에 적용되었다.
반복적 재구성법(Iterative Reconstruction, IR)의 정의와 기대효과는 무엇인가? [1] 최근 컴퓨터 기술의 진보로 영상의 인공물(artifact) 및 잡음을 줄이는 목적으로 고안된 반복적 재구성법(Iterative Reconstruction, IR)이 임상에 적용되었다. 이 재구성 방법은 data를 한 번만 처리하는 FBP와 달리 영상의 잡음을 줄이기 위해 raw dada 또는 reconstructed data를 반복적으로 처리하는데 사용되는 알고리즘(algorithm)을 총칭하며, 다양한 알고리즘이 임상에 도입되고 있으며 상당한 선량 감소의 가능성을 보여준다.[2] IR은 새로운 것이 아니며 1970년대 CT 도입 초기에 데이터 재구성을 위해 처음 제안된 방법이었으나, CT의 많은 양의 데이터와 수학적으로 계산해 낼 수 있는 기술의 한계로 임상에 적용할 수 없었다.
질의응답 정보가 도움이 되었나요?

참고문헌 (35)

  1. Hsieh, Jiang, et al., "Recent advances in CT image reconstruction," Current Radiology Reports, Vol. 1, No. 1, pp. 39-51, 2013. 

  2. Beister, Marcel, Daniel Kolditz, Willi A. Kalender., "Iterative reconstruction methods in X-ray CT," Physica medica, Vol. 28, No. 2, pp. 94-108, 2012. 

  3. Hounsfield, Godfrey N., "Computerized transverse axial scanning (tomography): Part 1. Description of system," The British journal of radiology, Vol. 4, No. 6, pp. 552, 1016-1022, 1973. 

  4. Geyer, Lucas L., et al. "State of the art: iterative CT reconstruction techniques." Radiology, Vol. 276, No. 2, pp. 339-357, 2015. 

  5. Willemink, Martin J., et al., "Iterative reconstruction techniques for computed tomography Part 1: technical principles," European radiology, Vol. 23, No. 6, pp. 1623-1631, 2013. 

  6. Vardhanabhuti, Varut, et al., "Image comparative assessment using iterative reconstructions: clinical comparison of low-dose abdominal/pelvic computed tomography between adaptive statistical, model-based iterative reconstructions and traditional filtered back projection in 65 patients," Investigative radiology, Vol. 49, No. 4, pp. 209-216, 2014. 

  7. Pickhardt, Perry J., et al., "Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging." American journal of roentgenology, Vol. 199, No. 6, pp. 1266-1274, 2012. 

  8. Ploussi, Agapi, et al., "Patient radiation exposure and image quality evaluation with the use of iDose4 iterative reconstruction algorithm in chest-abdomen-pelvis CT examinations," Radiation protection dosimetry, Vol. 158, No. 4, pp. 399-405, 2013. 

  9. Fontarensky, Mikael, et al., "Reduced radiation dose with model-based iterative reconstruction versus standard dose with adaptive statistical iterative reconstruction in abdominal CT for diagnosis of acute renal colic," Radiology, Vol. 276, No. 1, pp. 156-166, 2015. 

  10. Gervaise, Alban, et al. "Low-dose CT with automatic tube current modulation, adaptive statistical iterative reconstruction, and low tube voltage for the diagnosis of renal colic: impact of body mass index," American Journal of Roentgenology, Vol. 202, No. 3, pp. 553-560, 2014. 

  11. Prakash, Priyanka, et al., "Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique," Investigative radiology, Vol. 45, No. 4, pp. 202-210, 2010. 

  12. Padole, Atul, et al., "CT radiation dose and iterative reconstruction techniques." American Journal of Roentgenology, Vol. 204, No. 4, pp. 384-392, 2015. 

  13. Singh, Sarabjeet, et al., "Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques," Radiology, Vol. 257, No. 2, pp. 373-383, 2010. 

  14. May, Matthias S., et al., "Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography," Investigative radiology, Vol. 46, No. 7, pp. 465-470, 2011. 

  15. Schabel, Christoph, et al., "Clinical evaluation and potential radiation dose reduction of the novel sinogram-affirmed iterative reconstruction technique (SAFIRE) in abdominal computed tomography angiography," Academic radiology, Vol. 20, No. 2, pp. 165-172, 2013. 

  16. Kilic, K., et al., "Lowering the dose in head CT using adaptive statistical iterative reconstruction," American journal of neuroradiology, Vol. 32, No. 9, pp. 578-1582, 2011. 

  17. Vorona, G. A., et al., "The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study," American Journal of Neuroradiology, Vol. 34, No. 1, pp. 205-211, 2013. 

  18. Kaza, Ravi K., et al. "CT enterography at 80 kVp with adaptive statistical iterative reconstruction versus at 120 kVp with standard reconstruction: image quality, diagnostic adequacy, and dose reduction," American Journal of Roentgenology, Vol. 198. No. 5, pp. 1084-1092, 2012. 

  19. Goldman, Alice R., Pierre D. Maldjian, "Reducing radiation dose in body CT: a practical approach to optimizing CT protocols," American Journal of Roentgenology, Vol. 200, No. 4, pp. 48-754, 2013. 

  20. Solomon, Justin, et al., "Diagnostic performance of an advanced modeled iterative reconstruction algorithm for low-contrast detectability with a third-generation dual-source multidetector CT scanner: potential for radiation dose reduction in a multireader study," Radiology, Vol. 275, No. 3, pp. 735-745, 2015. 

  21. Greffier, Joel, et al., "CT dose reduction using automatic exposure control and iterative reconstruction: a chest paediatric phantoms study," Physica Medica, Vol. 32, No. 4, pp. 582-589, 2016. 

  22. Hu, X. H., et al., "Radiation dose of non-enhanced chest CT can be reduced 40% by using iterative reconstruction in image space," Clinical radiology, Vol. 66, No. 11, pp. 1023-1029, 2011. 

  23. Katsura, Masaki, et al., "Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique," European radiology, Vol. 22, No. 8, pp. 1613-1623, 2012. 

  24. Katsura, Masaki, et al., "Model-based iterative reconstruction technique for ultralow-dose chest CT: comparison of pulmonary nodule detectability with the adaptive statistical iterative reconstruction technique," Investigative radiology, Vol. 48, No. 4, pp. 206-212, 2013. 

  25. Leipsic, Jonathon, et al., "A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction," American Journal of Roentgenology, Vol. 195, No. 5, pp. 1095-1099, 2010. 

  26. Pontana, Francois, et al., "Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients," European radiology, Vol. 21, No. 3, pp. 627-635, 2011. 

  27. Prakash, Priyanka, et al., "Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique," Radiology, Vol. 256, No. 1, pp. 261-269, 2010. 

  28. Singh, Sarabjeet, et al., "Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study," Radiology, Vol. 258, No. 2, pp. 565-573, 2011. 

  29. Vardhanabhuti, Varut, et al., "Image quality assessment of standard-and low-dose chest CT using filtered back projection, adaptive statistical iterative reconstruction, and novel model-based iterative reconstruction algorithms," American Journal of Roentgenology, Vol. 200, No. 3, pp. 545-552, 2013. 

  30. Yuki, Hideaki, et al., "Clinical impact of model-based type iterative reconstruction with fast reconstruction time on image quality of low-dose screening chest CT," Acta Radiologica, Vol. 57, No. 3, pp. 295-302, 2016. 

  31. Jensen, Kristin, et al., "Image quality in oncologic chest computerized tomography with iterative reconstruction: a phantom study," Journal of computer assisted tomography, Vol. 40, No. 3, pp. 351-356, 2016. 

  32. Omoumi, Patrick, et al., "Low-dose multidetector computed tomography of the cervical spine: optimization of iterative reconstruction strength levels," Acta Radiologica, Vol. 55, No. 3, pp. 335-344, 2014. 

  33. Ott, Julien G., et al., "Update on the non-prewhitening model observer in computed tomography for the assessment of the adaptive statistical and model-based iterative reconstruction algorithms," Physics in Medicine & Biology, Vol. 59, No. 15, pp. 4047-4064, 2014. 

  34. Verdun, F. R., et al., "Image quality in CT: From physical measurements to model observers," Physica Medica, Vol. 31, No. 8, pp. 823-843, 2015. 

  35. Qiu, D., E. Seeram., "Does iterative reconstruction improve image qual-ity and reduce dose in computed tomography," Radiology, Vol. 1, No. 2, pp. 42-54, 2016. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로