$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.51 no.2, 2019년, pp.439 - 443  

Lee, Youngjin (Department of Radiological Science, Gachon University)

Abstract AI-Helper 아이콘AI-Helper

To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 7. CNR results (using ROI B and ROI C in Fig. 4) for the noisy image, median filter, and proposed median filter with improved thresholding at 1, 3, and 5 cm source-to-collimator distances.
  • 8. COV results (using ROI B in Fig. 4) for the noisy image, median filter, and proposed median filter with improved thresholding at 1, 3, and 5 cm source-to-collimator distances.
  • Therefore, we designed a noise reduction algorithm with a median filter using an improved thresholding method, which can achieve high noise reduction ratio while retaining more details, and we confirmed the feasibility of this algorithm in a CZT pixelated semiconductor gamma camera system. For that purpose, we simulated an eV-3500 CZT pixelated semiconductor gamma camera system in GATE and evaluated the imaging performance using NNPS, CNR, and COV.
  • In addition, the CNR and COV were used to evaluate the contrast, signal, and noise characteristics. The CNR and COV are calculated as follows:
  • Pan [35]. In this study, an improved median filter was suggested to estimate the noise pixels and will be changed by neighboring median pixels. Fig.
  • In this study, the development and implementation of a median filter using an improved thresholding method in a CZT pixelated semiconductor gamma camera system was presented and used to evaluate the noise characteristics using various evaluation parameters. Our results demonstrated that proposed median filter accomplished its goals of noise reduction in CZT gamma camera images.
  • Also, although a Wiener filter helped noise stabilization in the frequency domain, this filter also suffers from loss of image details [23]. Therefore, the purpose of this study was to design an improved noise reduction algorithm with a median filter by using a thresholding method in a CZT pixelated semiconductor gamma camera system. For that purpose, we compared our proposed and conventional median filters using the Geant4 Application for Tomographic Emission (GATE) simulation.

대상 데이터

  • The designed CZT pixelated semiconductor detector consisted of linear crystal arrays with 0.5 X 0.5 mm2 pixel pitch (total detector size: 128X 0.5 mm2 (5X 0.02 inch2)) and 3 mm thickness. The detection efficiency was approximately 72.
  • Finally, we designed a spatial resolution phantom to assess the imaging performance using a solution of 99mTc gamma source in water with different activities and diameters, and the phantom was acquired with respect to the source-to-collimator distance (1, 3, and 5 cm). This phantom consisted of six different activities and hot-rod diameters: 9000 Bqe0.5 mm, 15,500 Bqe0.85 mm, 30,000 Bqe1.2 mm, 45,000 Bqe1.5 mm, 60,000 Bqe1.8 mm, and 90,000 Bqe2.1 mm.

이론/모형

  • Among Monte Carlo simulations, Geant4 is widely used in the field of medical imaging and a tool for modelling the particle passage in the matter. In this study, we used GATE version 7.0 simulation, which is based on the open-source Geant4 software based on the Monte Carlo method [25,26]. For system modelling in the field of nuclear medicine imaging (gamma camera, single photon emission computed tomography (SPECT), and positron emission tomography (PET)), this simulation proved to be very useful in many studies [25e29].
  • The improved thresholding method for noise reduction algorithm modelling can be considered as a special case of de-noising in medical imaging. The concept of this algorithm was proposed by B. Wang and Q. Pan [35]. In this study, an improved median filter was suggested to estimate the noise pixels and will be changed by neighboring median pixels.
본문요약 정보가 도움이 되었나요?

참고문헌 (35)

  1. M. Bocher, I.M. Blevis, L. Tsukerman, Y. Shrem, G. Kovalski, L. Volokh, A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential, Eur. J. Nucl. Med. Mol. Imag. 37 (2010) 1887-1902. 

  2. E.B. Sokole, A. Plachcinska, A. Britten, M.L. Georgosopoulou, W. Tindale, R. Klett, Routine quality control recommendations for nuclear medicine instrumentation, Eur. J. Nucl. Med. Mol. Imag. 37 (2010) 662-671. 

  3. H.O. Anger, Scintillation camera with multichannel collimators, J. Nucl. Med. 5 (1964) 515-531. 

  4. H. Wieczorek, A. Goedicke, Analytical model for SPECT detector concepts, IEEE Trans. Nucl. Sci. 53 (2006) 1102-1112. 

  5. J.H. Kim, Y. Choi, K.S. Joo, B.S. Shin, J.W. Chong, S.E. Kim, K.H. Lee, Y.S. Choe, B.T. Kim, Development of a miniature scintillation camera using an NaI(Tl) scintillator and PSPMT for scintimammograph, Phys. Med. Biol. 45 (2000) 3481-3488. 

  6. H.C. Kim, H.J. Kim, K. Kim, M.H. Lee, Y. Lee, Comparison of image uniformity with photon counting and conventional scintillation single-photon emission computed tomography system: a Monte Carlo simulation study, Nucl. Eng. Technol. 49 (2017) 776-780. 

  7. P. Yang, C.D. Harmon, F.P. Doty, J.A. Ohlhausen, Effect of humidity on scintillation performance in Na and Tl activated CsI crystals, IEEE Trans. Nucl. Sci. 61 (2014) 1024-1031. 

  8. G. Matsumoto, Y. Imura, H. Morii, A. Miyake, T. Aoki, Analysis of artifact with X-ray CT using energy band by photon counting CdTe detector, Nucl. Instrum. Methods Phys. Res. 621 (2010) 292-294. 

  9. F. Weng, S. Bagchi, Y. Zan, Q. Huang, Y. Seo, An energy-optimized collimator design for a CZT-based SPECT camera, Nucl. Instrum. Methods Phys. Res. 806 (2016) 330-339. 

  10. C. Scheiber, CdTe and CdZnTe detectors in nuclear medicine, Nucl. Instrum. Methods Phys. Res. 448 (2000) 513-524. 

  11. K. Ogawa, N. Ohmura, H. Iida, K. Nakamura, T. Nakahara, A. Kubo, Development of an ultra-high resolution SPECT system with a CdTe semiconductor detector, Ann. Nucl. Med. 23 (2009) 763-770. 

  12. S. Lee, H.J. Kim, S.Y. Bae, Y. Lee, Experimental study of an easily controlled ultra-high-resolution pixel-matched parallel-hole collimator with a small cadmium zinc telluride pixelated gamma camera system, J. Med. Imag. Radiat. Sci. 47 (2016) 276-282. 

  13. Y.J. Lee, S.J. Park, S.W. Lee, D.H. Kim, Y.S. Kim, H.J. Kim, Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies, J. Kor. Phys. Soc. 62 (2013) 1317-1322. 

  14. Y.N. Choi, S. Lee, H.J. Kim, Reducing radiation dose by application of optimized low-energy X-ray filters to K-edge imaging with a photon counting detector, Phys. Med. Biol. 61 (2016) N35-N49. 

  15. B.S. Bhatia, S.L. Bugby, J.E. Lees, A.C. Perkins, A scheme for assessing the performance characteristics of small field-of-view gamma gameras, Phys. Med. 31 (2015) 98-103. 

  16. O. Gal, B. Dessus, F. Jean, F. Laine, C. Leveque, Operation of the CARTOGAM portable gamma camera in a photon-counting mode, IEEE Trans. Nucl. Sci. 48 (2001) 1198-1204. 

  17. H. Jeon, H. Kim, C.H. Lee, G. Cho, A simulation study on spatial resolution and noise power spectra of a URA-based multi-hole collimator in a small gamma camera, J. Nucl. Sci. Technol. 5 (2008) 530-533. 

  18. P. Chatterjee, P. Milanfar, Is denoising dead? IEEE Trans. Nucl. Sci. 19 (2010) 895-911. 

  19. J.T. Dobbins III, E. Samei, N.T. Ranger, Y. Chen, Intercomparison of methods for image quality characterization. II. Noise power spectrum, Med. Phys. 33 (2006) 1466-1475. 

  20. X. Zhang, Image denoising using local Wiener filter and its method noise, Optik 127 (2016) 6821-6828. 

  21. G. Gao, Y. Liu, An efficient three-stage approach for removing salt & pepper noise from digital images, Optik 126 (2015) 467-471. 

  22. K. Seo, S.H. Kim, S.H. Kang, J. Park, C.L. Lee, Y. Lee, The effect of total variation (TV) technique for noise reduction in radio-magnetic X-ray image: quantitative study, J. Magn. 21 (2016) 593-598. 

  23. S.H. Kang, K.Y. Kim, Y. Hwang, J.W. Hong, S.R. Baek, C.L. Lee, Y. Lee, A Monte Carlo simulation study for feasibility of total variation (TV) noise reduction technique using digital mouse whole body (MOBY) phantom image, Optik 156 (2018) 197-203. 

  24. Y. Lee, A.C. Lee, H.J. Kim, A Monte Carlo simulation study of an improved Kedge log-subtratction X-ray imaging using a photon counting CdTe detector, Nucl. Instrum. Methods Phys. Res. 830 (2016) 381-390. 

  25. I. Buvat, I. Castiglioni, Monte Carlo simulations in SPET and PET, Q. J. Nucl. Med. 46 (2002) 48-61. 

  26. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D.R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, I. Buvat, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Phys. Med. Biol. 56 (2011) 881-901. 

  27. C. Robert, N. Fourrier, D. Sarrut, S. Stute, P. Gueth, L. Grevillot, I. Buvat, PET-based dose delivery verification in proton therapy: a GATE based simulation study of five PET system designs in clinical conditions, Phys. Med. Biol. 58 (2013) 6867-6885. 

  28. S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, I. Buvat, Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images, Phys. Med. Biol. 56 (2011) 6441-6457. 

  29. S. Li, Q. Zhang, Z. Xie, Q. Liu, B. Xu, K. Yang, C. Li, Q. Ren, GATE simulation of a LYSO-based SPECT imager: validation and detector optimization, Nucl. Instrum. Methods Phys. Res. 773 (2015) 21-26. 

  30. D. Sarrut, M. Bardies, N. Boussion, N. Freud, S. Jan, J.M. Letang, G. Loudos, L. Mainge, S. Marcatili, T. Mauxion, P. Papadimitroulas, Y. Perrot, U. Pietrzyk, C. Robert, D.R. Schaart, D. Visvikis, I. Buvat, A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications, Med. Phys. 41 (2014), 064301-1-14. 

  31. C. Beijst, M. Elschot, M.A. Viergever, H.W.A.M. de jong, A parallel-cone collimator for high-energy SPECT, J. Nucl. Med. 56 (2015) 476-482. 

  32. N. Kubo, K. Tsuchiya, T. Shiga, S. Kojima, A. Suzuki, Y. Ueno, K. Kobashi, N. Tamaki, Collimator for variable sensitivity and spatial resolution without the need for exchange, IEEE Trans. Nucl. Sci. 61 (2014) 2489-2493. 

  33. Y. Lee, W. Kang, Performance evaluation of high-resolution square parallel-hole collimators with a CZT room temperature pixelated semiconductor SPECT system: a Monte Carlo simulation study, J. Instrum. (2015), https://doi.org/10.1088/1748-0221/10/07/T07004. 

  34. Y.J. Lee, H.J. Ryu, S.W. Lee, S.J. Park, H.J. Kim, Comparision of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system, Nucl. Instrum. Methods Phys. Res. 713 (2013) 33-39. 

  35. B. Wang, Q. Pan, Soft-threshold histogram weighted filtering with correlativity for high density salt-pepper noise images, Acta Electron. Sin. 35 (2007) 1347-1351. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로