$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 해양환경에서의 수동형채집기(Passive Sampler)의 활용: 2. 현장노출시간 단축을 위한 개선법
Application of Passive Sampling in Marine Environment: 2. Modified Method for Shortening of Deployment Time in a Field 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.24 no.2, 2019년, pp.249 - 265  

장유리 (경상대학교 해양시스템공학과) ,  이효진 (경상대학교 해양환경공학과) ,  정해진 (경상대학교 해양시스템공학과) ,  김기범 (경상대학교 해양시스템공학과)

초록
AI-Helper 아이콘AI-Helper

수동형채집기(passive sampler)는 해수나 퇴적물 내 공극수에서의 자유용존상 농도 (freely dissolved and bioavailable concentration, $C_{free}$)를 쉽고 보다 정확히 예측할 수 있는 유망한 방법 중 하나이다. 유럽이나 미국에서는 보다 정확한 위해도 평가를 위해 해양환경 모니터링에 수동형채집기를 적극적으로 사용하는 추세이지만, 현장 적용 시 노출시간이 길어짐에 따라 수동형채집기의 생물부착으로 인한 문제점으로 국내에서의 활용도는 매우 낮다. 따라서 본 연구에서는 난분해성 유기오염물질을 대상으로 하는 수동형채집기의 원리 및 기본적인 특징을 파악하고, 수동형채집기의 현장 적용을 위한 다양한 개선 사례를 조사함으로써 국내에서의 수동형채집기의 활용도를 높이기 위한 방안을 제시하였다.

Abstract AI-Helper 아이콘AI-Helper

A passive sampler is one of the promising methods to easily and more accurately predict the free dissolved and bioavailable concentration ($C_{free}$) in seawater or pore water in sediments. In Europe and the United States, the use of passive samplers has been highly encouraged for more a...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 1장은 난분해성 유기오염물질을 대상으로 하는 수동형채집기의 종류 및 특징, 국외 해양환경에서의 적용 사례에 대한 고찰 등을 다루었으며(Lee at al., in press), 2장인 본 논문에서는 난분해성 유기오염물질을 대상으로 하는 수동형채집기의 동향을 파악하고, 수동형채집기별 평형에 도달하는데 소요되는 시간, 그리고 현장노출 시간 단축을 위한 다양한 연구사례를 수집하고 검토함으로써 국내 해양환경에서의 수동형채집기의 적용을 활성화하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
수동형채집기의 장점은? 1990년대 이후부터 위와 같은 복잡한 절차를 줄이고 보다 정확한 생물학적 영향을 파악하기 위해 자유용존상 농도 측정법 개발의 필요성이 제기되었고, 이를 위해 수동형채집기(passive sampler)가 고안되었다. 수동형채집기란 생물의 지방과 유사한 유기 물질이 분배평형 원리에 따라 유기오염물질을 흡수하는 성질을 이용한 생체모방형 장치로서, 용존유기탄소와 같은 거대분자는 흡수하지 않고 생물이 실제로 이용할 수 있는 자유용존상 유기오염물질만을 흡수한다. 따라서 회수되어진 수동형채집기로부터의 자유용존상 농도 측정은 기존의 분석법과 달리 화학분석이 용이하며, 낮은 검출한계로 인해 pg/L 수준의 매우 낮은 농도까지 검출이 가능하다(Mayer et al.
수동형채집기란 무엇인가? 1990년대 이후부터 위와 같은 복잡한 절차를 줄이고 보다 정확한 생물학적 영향을 파악하기 위해 자유용존상 농도 측정법 개발의 필요성이 제기되었고, 이를 위해 수동형채집기(passive sampler)가 고안되었다. 수동형채집기란 생물의 지방과 유사한 유기 물질이 분배평형 원리에 따라 유기오염물질을 흡수하는 성질을 이용한 생체모방형 장치로서, 용존유기탄소와 같은 거대분자는 흡수하지 않고 생물이 실제로 이용할 수 있는 자유용존상 유기오염물질만을 흡수한다. 따라서 회수되어진 수동형채집기로부터의 자유용존상 농도 측정은 기존의 분석법과 달리 화학분석이 용이하며, 낮은 검출한계로 인해 pg/L 수준의 매우 낮은 농도까지 검출이 가능하다(Mayer et al.
수동형채집기의 한계점은? 수동형채집기는 해수나 퇴적물 내 공극수에서의 자유용존상 농도를 쉽고 보다 정확히 예측할 수 있는 유망한 방법 중 하나이다. 그러나 현장노출시 긴 평형도달 시간으로 생물부착의 생성, 분석대상물질의 흡수가 저해되는 한계점이 있다. 수동형채집기의 현장노출시간을 단축하기 위한 방법으로 실행보정물질을 이용해 평형상태에서의 자유용존상 농도를 예측하는 방법이 가장 보편화되어 있으며, 해수의 경우 수동형채집기 표면에 난류를 형성시키거나 해류 흐름과 수평하게 설치함으로써 오염물질의 흡수속도를 증가시킬 수 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (100)

  1. Accardi-Dey, A.M. and P.M. Gschwend, 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environ. Sci. Technol., 36: 21-29. 

  2. Adams, R.G., R. Lohmann, L.A. Fernandez, J.K. MacFarlane and P.M. Gschwend, 2007. Polyethylene Devices: Passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ. Sci. Technol., 41: 1317-1323. 

  3. Ahrens, L., A. Daneshvar, A.E. Lau and J. Kreuger, 2015. Characterization of five passive sampling devices for monitoring of pesticides in water. J. Chromatogr. A., 1405: 1-11. 

  4. Allan, I.J., H.C. Nilsson, I. Tjensvoll, C. Bradshaw and K. Naes, 2011. Mobile passive samplers: Concept for a novel mode of exposure. Environ. Pollut., 159: 2393-2397. 

  5. Allan, I.J., A. Ruus, M.T. Schaanning, K.J. Macrae and K. Naes, 2012. Measuring nonpolar organic contaminant partitioning in three Norwegian sediments using polyethylene passive samplers. Sci. Total Environ., 423: 125-131. 

  6. Allan, I.J., C. Harman, S.B. Ranneklev, K.V. Thomas and M. Grung, 2013. Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water. Environ. Toxicol. Chem., 32: 1718-1726. 

  7. An, J.G., W.J. Shim, S.Y. Ha and U.H. Kim, 2014. Determination of petroleum aromatic hydrocarbons in seawater using headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. J. Korean Soc. Mar. Environ. Energy, 17: 27-35. 

  8. Anderson, K.A., D. Sethajintanin, G. Sower and L. Quarles, 2008. Field trial and modeling of uptake rates of in situ lipid-free polyethylene membrane passive sampler. Environ. Sci. Technol., 42: 4486-4493. 

  9. Apell, J.N. and P.M. Gschwend, 2014. Validating the Use of Performance Reference Compounds in Passive Samplers to Assess Porewater Concentrations in Sediment Beds. Environ. Sci. Technol., 48: 10301-10307. 

  10. Apell, J.N., A.P. Tcaciuc and P.M. Gschwend, 2016a. Understanding the rates of nonpolar organic chemical accumulation into passive samplers deployed in the environment: Guidance for passive sampler deployments. Integr. Environ. Assess. Manag., 12: 486-492. 

  11. Apell, J.N. and P.M. Gschwend, 2016b. In situ passive sampling of sediments in the Lower Duwamish Waterway Superfund site: Replicability, comparison with ex situ measurements, and use of data. Environ. Pollut., 218: 95-101. 

  12. Bao, L.J., S.P. Xu, Y. Liang and E.Y. Zeng, 2012. Development of a low-density polyethylene-containing passive sampler for measuring dissolved hydrophobic organic compounds in open waters. Environ. Toxicol. Chem., 31: 1012-1018. 

  13. Bao, L.J. and E.Y. Zeng, 2014. Field application of passive sampling techniques for sensing hydrophobic organic contaminants. Trends Environ. Anal. Chem., 1: 19-24. 

  14. Booij, K., F. Smedes and E.M. Van Weerle, 2002a. Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 46: 1157-1161. 

  15. Booij, K., B.N. Zegers and J.P. Boon, 2002b. Levels of some polybrominated diphenyl ether (PBDE) flame retardants along the Dutch coast as derived from their accmulation in SPMDs and blue mussels. Chemosphere, 46: 683-688. 

  16. Booij, K., H.E. Hofmans, C.V. Fischer and E.M. Van Weerlee, 2003. Temperature-dependent uptake rate of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environ. Sci. Technol., 37: 361-366. 

  17. Booij, K., R. van Bommel, K.C. Jones and J.L. Barber, 2007. Air-water distribution of hexachlorobenzene and 4,4′ -DDE along a North-South Atlantic transect. Mar. Pollut. Bull., 54: 814-819. 

  18. Booij, K., C.D. Robinson, R.M. Burgess, P. Mayer, C.A. Roberts, L. Ahrens, I.J. Allan, J. Brant, L. Jones, U.R. Kraus, M.M. Larsen, P. Lepom, J. Petersen, D. Profrock, P. Roose, S. Schafer, F. Smedes, C. Tixier, K. Vorkamp and P. Whitehouse, 2016. Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ. Sci. Technol., 50: 3-17. 

  19. Borrelli, R., A.P. Tcaciuc, I. Verginelli, R. Baciocchi, L. Guzzella, P. Cesti, L. Zaninetta and P.M. Gschwend, 2018. Performance of passive sampling with low-density polyethylene membranes for the estimation of freely dissolved DDx concentrations in lake environments. Chemosphere, 200: 227-236. 

  20. Choi S.D, S.Y. Beak and Y.S. Chang, 2009. Passive air sampling of persistent organic pollutants in Korea. Toxicol. Environ. Health. Sci. 1: 75-82. 

  21. Cornelissen, G., K. Wiberg, D. Broman, H.P.H. Arp, Y. Persson, K. Sundqvist and P. Jonsson, 2008a. Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic Sea. Environ. Sci. Technol., 42: 8733-8739. 

  22. Cornelissen, G., A. Pettersen, D. Broman, P. Mayer and G.D. Breedveld, 2008b. Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations. Environ. Toxicol. Chem., 27: 499-508. 

  23. Cornelissen, G., G. Okkenhaug, G.D. Breedveld and J.E. Sorlie, 2009. Transport of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in a landfill: A novel equilibrium passive sampler to determine free and total dissolved concentrations in leachate water. J. Hydrol., 369: 253-259. 

  24. Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas and P.R. Paquin, 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem., 10: 1541-1583. 

  25. Endo, S., Y. Yabuki and S. Tanaka, 2017. Comparing polyethylene and polyoxymethylene passive samplers for measuring sediment porewater concentrations of polychlorinated biphenyls: Mutual validation and possible correction by polymer-polymer partition experiment. Chemosphere, 184: 358-365. 

  26. Fernandez, L.A., W. Lao, K.A. Maruya, C. White and R.M. Burgess, 2012. Passive sampling to measure baseline dissolved persistent organic pollutant concentrations in the water column of the Palos Verdes Shelf Superfund site. Environ. Sci. Technol., 46: 11937-11947. 

  27. Fernandez, L.A., W. Lao, K.A. Maruya and R.M. Burgess, 2014. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes Shelf Superfund Site using polymeric passive samplers. Environ. Sci. Technol., 48: 3925-3934 

  28. Ghosh, U., S.K. Driscoll, R.M. Burgess, M.T.O. Jonker, D. Reible, F. Gobas, Y. Choi, S.E. Apitz, K.A. Maruya, W.R. Gala, M. Mortimer and C. Beegan, 2014. Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr. Environ. Assess. Manag., 10: 210-223. 

  29. Gschwend, P.M., J.K. MacFarlane, D.D. Relble, X. Lu, S.B. Hawthorne, D.V. Nakles and T. Thompson, 2011. Comparison of polymeric samplers for accurately assessing PCBs in pore waters. Environ. Toxicol. Chem., 30: 1288-1296. 

  30. Gustafsson, O., F. Haghseta, C. Chan, J. MacFarlane and P.M. Gschwend, 1996. Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability. Environ. Sci. Technol., 31: 203-209. 

  31. Hawthorne, S.B., M.T.O. Jonker, S.A. van der Heijden, C.B. Grabanski, N.A. Azzolina and D.J. Miller, 2011. Measuring picogram per liter concentrations of freely dissolved parent and alkyl PAHs (PAH-34), using passive sampling with polyoxymethylene. Anal. Chem., 83: 6754-6761. 

  32. Heo, J. and G. Lee, 2014. Field-measured uptake rates of PCDDs/Fs and dl-PCBs using PUF-disk passive air samplers in Gyeonggi-do, South Korea. Sci. Total Environ., 491-492: 42-50. 

  33. Huckins, J.N., M.W. Tubergen and G.K. Manuweera, 1990. Semipermeable membrane devices containing model lipid: A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20: 533-552. 

  34. Huckins, J.N., J.D. Petty, C.E. Orazio, J.A. Lebo, R.C. Clark, V.L. Gibson, W.R. Gala and K.R. Echols, 1999. Determination of uptake kinetics (sampling rates) by lipid-containing semipermeable membrane devices (SPMDs) for polycyclic aromatic hydrocarbons (PAHs) in water. Environ. Sci. Technol., 33: 3918-3923. 

  35. Huckins, J.N., J.D. Petty, J.A. Lebo, F.V. Almeida, K. Booij, D.A. Alvarez, W.L. Cranor, R.C. Clark and B.B. Mogensen, 2002. Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membreane devices. Environ. Sci. Technol., 36: 85-91. 

  36. Huckins, J.N., J.D. Petty and K. Booij, 2006. Monitors of organic chemicals in the environment. In: Semipermeable membrane devices. Springer, New York. 

  37. ITRC (Interstate Technology & Regulatory Council), 2011. Incorporating bioavailability considerations into the evaluation of contaminated sediment sites, 162 pp. 

  38. Jahnke, A., P. Mayer and M.S. McLachlan, 2012. Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ. Sci. Technol., 46: 10114-10122. 

  39. Jalalizadeh, M. and U. Ghosh, 2016. In situ passive sampling of sediment porewater enhanced by periodic vibration. Environ. Sci. Technol., 50: 8741-8749. 

  40. Jonker, M.T.O. and A.A. Koelmans, 2001. Polyoxymethylene solid phase extraction as a partitioning method for hydrophobic organic chemicals in sediment and soot. Environ. Sci. Technol., 35: 3742-3748. 

  41. Jonker, M.T.O. and A.A. Koelmans, 2002. Extraction of polycyclic aromatic hydrocarbons from soot and sediment: Solvent evaluation and implications for sorption mechanism. Environ. Sci. Technol., 36: 4107-4113. 

  42. Jonker, M.T.O., S.A. van der Heijden, M. Kotte and F. Smedes, 2015. Quantifying the effects of temperature and salinity on partitioning of hydrophobic organic chemicals to silicone rubber passive samplers. Environ. Sci. Technol., 49: 6791-6799. 

  43. Jonker, M.T.O., S.A. van der Heijden, D. Adelman, J.N. Apell, R.M. Burgess, Y. Choi, L.A. Fernandez, G.M. Flavetta, U. Ghosh, P.M. Gschwend, S.E. Hale, M. Jalalizadeh, M. Khairy, M.A. Lampi, W. Lao, R. Lohmann, M.J. Lydy, K.A. Maruya, S.A. Nutile, A.M.P. Oen, M.I. Rakowska, D. Reible, T.P. Rusina, F. Smedes and Y. Wu, 2018. Advancing the use of passive sampling in risk assessment and management of sediments contaminated with hydrophobic organic chemicals: Results of an international ex situ passive sampling interlaboratory comparison. Environ. Sci. Technol., 52: 3574-3582. 

  44. Joyce, A.S., M.S. Pirogovsky, R.G. Adams, W. Lao, D. Tsukada, C.L. Cash, J.F. Haw and K.A. Maruya, 2015. Using performance reference compound-corrected polyethylene passive samplers and caged bivalves to measure hydrophobic contaminants of concern in urban coastal seawaters. Chemosphere, 127: 10-17. 

  45. Kim, U.J., H.Y. Kim, D. Alvarez, I.S. Lee and J.E. Oh, 2014. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples. Sci. Total Environ., 470-471: 1537-1544. 

  46. Kim, U.J., C.D. Seo, T.H. Im and J.E. Oh, 2015. Application assessment of passive sampling to monitor polybrominated diphenyl ethers in water environment as alternative sampling method for grab sampling. J. Korean Soc. Environ. Eng., 37: 45-51. 

  47. Kim, S.J., H.O. Kwon, M.I. Lee, Y. Seo and S.D. Choi, 2019. Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environ. Sci. Pollut. Res., 26: 5831-5841. 

  48. Lao, W., Y. Hong, D. Tsukada, K.A. Maruya and J. Gan, 2016. A new film-based passive sampler for moderately hydrophobic organic compounds. Environ. Sci. Technol., 50: 13470-13476. 

  49. Lao, W., K.A. Maruya and D. Tsukada, 2019. An exponential model based new approach for correcting aqueous concentrations of hydrophobic organic chemicals measured by polyethylene passive samplers. Sci. Total Environ., 646: 11-18. 

  50. Lefkovitz, L., E. Crecelius and N. McElroy, 1996. Poster presented at the 17th Annual Meeting of the Society of Environmental Toxicology and Chemistry, 17-21 November, Washington. DC, USA. 

  51. Liu, H.H., L.J. Bao, K. Zhang, S.P. Xu, F.C. Wu and E.Y. Zeng, 2013. Novel passive sampling device for measuring sediment-water diffusion fluxes of hydrophobic organic chemicals. Environ. Sci. Technol., 47: 9866-9873. 

  52. Liu, H.H., L.J. Bao and E.Y. Zeng, 2014. Recent advances in the field measurement of the diffusion flux of hydrophobic organic chemicals at the sediment-water interface. Trends Anal. Chem., 54: 56-64. 

  53. Lohmann, R., J.K. Macfarlane and P.M. Gschwend, 2005. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbor sediments. Environ. Sci. Technol., 39: 141-148. 

  54. Lohmann, R., 2012. Critical review of low-density polyethylene's partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ. Sci. Technol., 46: 606-618. 

  55. Lohmann, R., K. Booij, F. Smedes and B. Vrana, 2012a. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. Environ. Sci. Pollut. Res., 19: 1885-1895. 

  56. Lohmann, R., J. Klanova, P. Kukucka, S. Yonis and K. Bollinger, 2012b. PCBs and OCPs on a West-to-East transect: The importance of major current and net volatilization for PCBs in the Atlantic Ocean. Environ. Sci. Technol., 46: 10471-10479. 

  57. Lu, X., A. Skwarski, B. Drake and D.D. Reible, 2011. Predicting bioavailability of PAHs and PCBs with porewater concentrations measured by solid-phase microextraction fibers. Environ. Toxicol. Chem., 30: 1109-1116. 

  58. Martin, A., C. Margoum, J. Randon and M. Coquery, 2016. Silicone rubber selection for passive sampling of pesticides in water. Talanta, 160: 306-313. 

  59. Martinez, A., C. O'Sullivan, D. Reible and K.C. Hornbuckle, 2013. Sediment pore water distribution coefficients of PCB congeners in enriched black carbon sediment. Environ. Pollut., 182: 357-363. 

  60. Maruya, K.A., W. Lao, D. Tsukada and D.W. Diehl, 2015. A passive sampler based on solid phase microextraction (SPME) for sediment-associated organic pollutants: Comparing freely-dissolved concentration with bioaccumulation. Chemosphere, 137: 192-197. 

  61. Mayer, P., W.H.J. Vaes, F. Wijnker, K.C.H.M. Legierse, R.H. Kraaij, J. Tolls and J.L.M. Hermens, 2000. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ. Sci. Technol., 34: 5177-5183. 

  62. Mayer, P., T.F. Parkerton, R.G. Adams, J.G. Cargill, J. Gan, T. Gouin, P.M. Gschwend, S.B. Hawthorne, P. Helm, G. Witt, J. You and B.I. Escher, 2014. Passive sampling in contaminated sediment assessment: Scientific rationale supporting use of freely dissolved concentrations. Integr. Environ. Assess. Manag., 10: 197-209. 

  63. McDonough, K.M., N.A. Azzolina, S.B. Hawthorne, D.V. Nakles and E.F. Neuhauser, 2010. An evaluation of the ability of chemical measurements to predict polycyclic aromatic hydrocarbon-contaminated sediment toxicity to Hyalella zateca. Environ. Toxicol. Chem., 29: 1545-1550. 

  64. McDonough, C.A., A.O. De Silva, C. Sun, A. Cabrerizo, D. Adelman, T. Soltwedel, E. Bauerfeind, D.C.G. Muir and R. Lohmann, 2018. Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: arctic surface water distributions and net transport through fram strait. Environ. Sci. Technol., 52: 6208-6216. 

  65. Miege, C., N. Mazzella, I. Allan, V. Dulio, F. Smedes, C. Tixier, E. Vermeirssen, J. Brant, S. O'Toole, H. Budzinski, J.P. Ghestem, P.F. Staub, S. Lardy-Fontan, J.L. Gonzalez, M. Coquery and B. Vrana. 2015. Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment-Achievements to date and perspectives. Trends Environ. Anal. Chem., 8: 20-26. 

  66. Mills, G.A., G.R. Fones, K. Booij and R. Greenwood, 2011. Passive sampling technologies. In Chemical Marine Monitoring: Policy Framework and Analytical Trends; Quevauviller, P., Roose, P., Verreet, G., Eds.; John Wiley and Sons: Chichester. 397-432 pp. 

  67. Monteyne, E., P. Roose and C.R. Janssen, 2013. Application of a silicone rubber passive sampling technique for monitoring PAHs and PCBs at three Belgian coastal harbours. Chemosphere, 91: 390-398. 

  68. Moschet, C., E.L.M. Vermeirssen, R. Seiz, H. Pfefferli and J. Hollender, 2014. Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. Water Res., 66: 411-422. 

  69. Muijs, B. and M.T.O. Jonker, 2012. Does equilibrium passive sampling reflect actual in situ bioaccumulation of PAHs and petroleum hydrocarbon mixtures in aquatic worms? Environ. Sci. Technol., 46: 937-944. 

  70. Muller, J.F., K. Manomanii, M.R. Mortimer and M.S. McLachlan, 2001. Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system. Fresenius J. Anal. Chem., 371: 816-822. 

  71. NOAA (National Oceanic and Atmospheric Administration), https://oceanexplorer.noaa.gov/technology/tools/spmds/spmds.html, Semipermeable Membrane Devices. 

  72. Ossiander, L., F. Reichenberg, M.S. McLachlan and P. Mayer, 2008. Immersed solid phase microextraction to measure chemical activity of lipophilic organic contaminants in fatty tissue samples. Chemosphere, 71: 1502-1510. 

  73. Perron, M.M., R.M. Burgess, E.M. Suuberg, M.G. Cantwell and K.G. Pennell, 2013a. Performance of passive samplers for monitoring estuarine water column concentrations: 1. Contaminants of concern. Environ. Toxicol. Chem., 32: 2182-2189. 

  74. Perron, M.M., R.M. Burgess, E.M. Suuberg, M.G. Cantwell and K.G. Pennell, 2013b. Performance of passive samplers for monitoring estuarine water column concentrations: 2. Emerging contaminants. Environ. Toxicol. Chem., 32: 2190-2196. 

  75. Pintado-Herrera, M.G., P.A. Lara-Martin, E. Gonzalez-Mazo and I.J. Allan, 2016. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants. Environ. Toxicol. Chem., 35: 2162-2172. 

  76. Prest, H.F., L.A. Jacobson, J.N. Huckins, 1995. Passive sampling of water and coastal air via semipermeable membrane devices. Chemosphere, 30: 1351-1361. 

  77. Prest, H.F., W.M. Jarman, S.A. Burns, T. Weismuller, M. Martin and J.N. Huckins, 1992. Passive water sampling via semipermeable membrane devices (SPMDs) in concert with bivalves in the Sacramento/San Joaquin river delta. Chemosphere, 25: 1811-1823. 

  78. Prokes, R., B. Vrana and J. Klanova, 2012. Levels and distribution of dissolved hydrophobic organic contaminants in the Morava river in Zlin district, Czech Republic as derived from their accumulation in silicone rubber passive samplers. Environ. Pollut., 166: 157-166. 

  79. Qin, Z., L. Bragg, G. Ouyang, V.H. Niri and J. Pawliszyn, 2009. Solid-phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water, J. Chromatogr. A., 1216: 6979-6985. 

  80. Rantalainen, A.L., W.J. Cretney and M.G. Ikonomou, 2000. Uptake rates of semipermeable membrane devices (SPMDs) for PCDDs, PCDFs and PCBs in water and sediment. Chemosphere, 40: 147-158. 

  81. Reitsma, P.J., D. Adelman and R. Lohmann, 2013. Challenges of using polyethylene passive samplers to determine dissolved concentrations of parent and alkylated PAHs under cold and saline conditions. Environ. Sci. Technol., 47: 10429-10437. 

  82. Richardson, B.J., P.K.S. Lam, G.J. Zheng, K.E. McClellan and S.B. De Luca-Abbott, 2002. Biofouling confounds the uptake of trace organic contaminants by semi-permeable membrane devices (SPMDs). Mar. Pollut. Bull., 44: 1372-1379. 

  83. Rusina, T.P., F. Smedes, M. Koblizkova and J. Klanova, 2010. Calibration of silicone rubber passive samplers: experimental and modeled relations between sampling rate and compound properties. Environ. Sci. Technol., 44: 362-367. 

  84. Sacks, V.P. and R. Lohmann, 2012. Freely dissolved PBDEs in water and porewater of an urban estuary. Environ. Pollut., 162: 287-293. 

  85. Smedes, F., 1994. Sampling and partition of neutral organic contaminants in surface waters with regard to legislation, environmental quality and flux estimations. Int. J. Environ. Anal. Chem., 57: 215-29. 

  86. Smedes, F., 2007. Monitoring of chlorinated biphenyls and polycyclic aromatic hydrocarbons by passive sampling in concert with deployed mussels. In passive sampling techniques in environmental monitoring, Ch. 19. Ed. by R. Greenwood, R., Mills, G.A., Vrana, B., Elsevier, Amsterdam. 

  87. UNEP (United Nations Environment Programme), 2001. Final act of the plenipotentiaries on the Stockholm Convention on persistent organic pollutants; United Nations Environment Program Chemicals. 

  88. UNEP (United Nations Environment Programme), 2004. Guidance for a global monitoring programme for persistent organic pollutants, 1st ed.; United nations environment programme chemicals. 

  89. USEPA (United States Environmental Protection Agency), 2012. Guidelines for using passive samplers to monitor organic contaminants at superfund sediment sites, 32 pp. 

  90. USEPA (United States Environmental Protection Agency), 2017. Laboratory, field, and analytical procedures for using passive sampling in the evaluation of contaminated sediments: User's manual, 153 pp. 

  91. van der Wal, L., T. Jager, R.H.L.J. Fleuren, A. Barendregt, T.L. Sinnige, C.A.M. van Gestel and J.L.M. Hermens, 2004. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. Environ. Sci. Technol., 38: 4842-4848. 

  92. Vrana, B. and G. Schuurmann, 2002. Calibrationg the uptake kinetics of semipermeable membrane devices in water: Impact of hydrodynamics. Environ. Sci. Technol., 36: 290-296. 

  93. Vrana, B., I.j. Allan, R. Greenwood, G.A. Mills, E. Dominiak, K. Svensson, J. Knutsson and G. Morrison, 2005. Passive sampling techniques for monitoring pollutants in water. Trends Anal. Chem., 24: 845-868. 

  94. Vrana, B., F. Smedes, T. Rusina, K. Okonski, I. Allan, M. Grung, K. Hilscherova, J. Novak, P. Tarabek and J. Slobodnik, 2015. 29 passive sampling: chemical analysis and toxicological profiling. 304-315 pp. 

  95. Witt, G., S.C. Lang, D. Ulmann, G. Schaffrath, D. Schulz-Bull and P. Mayer, 2013. Passive equilibrium sampler for in situ measurements of freely dissolved concentrations of hydrophobic organic chemicals in sediments. Environ. Sci. Technol., 47: 7830-7839. 

  96. Xu, C., J. Wang, J. Richards, T. Xu, W. Liu and J. Gan, 2018. Development of film-based passive samplers for in situ monitoring of trace levels of pyrethroids in sediment. Environ. Pollut., 242: 1684-1692. 

  97. Yates, K., P. Pollard, L. Davies, L. Webster and C. Moffat, 2013. Silicone rubber passive samplers for measuring pore water and exchangeable concentrations of polycyclic aromatic hydrocarbons concentrations in sediments. Sci. Total Environ., 463-464: 988-996. 

  98. You, J., P.F. Landrum and M.J. Lydy, 2006. Comparison of chemical approaches for assessing bioavailability of sediment-associated contaminants. Environ. Sci. Technol., 40: 6348-6353. 

  99. Zeng, E.Y., D. Tsukada and D.W. Diehl, 2004. Development of a solid-phase microextraction-based method for sampling of persistent chlorinated hydrocarbons in an urbanized coastal environment. Environ. Sci. Technol., 38: 5737-5743. 

  100. Zhang, X., K.D. Oakes, S. Cui, L. Bragg, M.R. Servos and J. Pawliszyn, 2010. Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (oncorhynchus mykiss) using space-resolved solid-phase microextraction. Environ. Sci. Technol., 44: 3417-3422. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로