$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

임의 최소주응력 구간에서 일반화된 Hoek-Brown 파괴기준식을 최적 근사하는 등가 Mohr-Coulomb 강도정수 계산식
Analytical Formula for the Equivalent Mohr-Coulomb Strength Parameters Best-fitting the Generalized Hoek-Brown Criterion in an Arbitrary Range of Minor Principal Stress 원문보기

터널과 지하공간: 한국암반공학회지 = Tunnel and underground space, v.29 no.3, 2019년, pp.172 - 183  

이연규 (군산대학교 건축.해양건설융합공학부)

초록
AI-Helper 아이콘AI-Helper

Hoek et al.(2002)이 개발한 일반화된 Hoek-Brown(GHB) 파괴기준식은 암반의 파괴응력 조건을 정의하는 비선형 함수이다. 관련 강도정수들은 GSI 지수값을 이용하여 체계적으로 결정된다. GSI 지수는 현장 암반의 상태를 정량화한 수치이므로 GHB 파괴기준식은 현장의 암반조건을 파괴기준식에 반영할 수 있는 실용적인 암반파괴함수이다. 대부분의 암반공학 기술자들이 선형 Mohr-Coulomb 파괴기준식에 익숙하며, 다수의 암반공학 소프트웨어들이 Mohr-Coulomb 식을 채택하고 있음을 고려하여 등가마찰각과 등가점착력 계산식이 GHB 파괴기준식 발표와 함께 제시되었다. 그러나 이 목적으로 제시된 등 가마찰각 및 등가점착력 계산식은 선형 최적화가 수행되는 최소주응력 범위의 하한 값을 암반의 인장강도로 고정시키고 있다. 따라서 해석영역에 인장응력이 분포하지 않은 경우 Hoek et al.(2002)의 제안식을 이용한 등가마찰각 및 등가점착력 산정결과는 정확성이 떨어질 수 있다. 이러한 기존 등가마찰각 및 등가점착력 산정수식의 단점을 극복하기 위하여 이 연구에서는 임의의 최소주응력 구간에 대해서도 최적 등가마찰각과 등가점착력을 계산할 수 있는 해석적 수식을 유도하고 결과식의 정확성을 검증하였다.

Abstract AI-Helper 아이콘AI-Helper

The generalized Hoek-Brown (GHB) failure criterion developed by Hoek et al. (2002) is a nonlinear function which defines a stress condition at failure of rock mass. The relevant strength parameter values are systematically determined using the GSI value. Since GSI index is a value quantifying the co...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 절리 암반의 파괴개시 조건으로 개발된 GHB 파괴조건식에서는 최소주응력이 σ3 일 때 최대주응력 σ1이 다음의 비선형 관계식을 만족하면 암반의 파괴가 발생하는 것으로 가정한다(Hoek et al., 2002).
  • 터널 해석의 경우를 가정하고 이 연구에서 유도한 해석적 수식을 이용하여 압축 최소주응력 구간에서 등가마찰각과 등가점착력을 계산한 후 그 결과를 Hoek et al.(2002)의 해석식을 이용한 결과와 비교하였다.
  • 터널의 심도는 100m로 가정하였으며, 나머지 입력자료는 mi=10, σci=50 MPa, D=0.0, =0.026 MPa/m을 가정하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (17)

  1. Bieniawski, Z.T., 1989, Engineering rock mass classification, New York, Wiley. 

  2. Bretscher, O., 2005, Linear algebra with applications (3rd Ed), Pearson Prentice Hall, Upper Saddle River, New Jersey. 

  3. Clausen, J. and Damkilde, L., 2008, An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations, Int. J. Rock Mech. Min. Sci., 45, 831-847. 

  4. Hoek, E., 1983, Strength of jointed rock masses, 23rd Rankine Lecture, Geotechnique, 33(3), 187-223. 

  5. Hoek, E. and Brown, E.T., 1997, Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. 

  6. Hoek, E., Carranza-Torres, C., and Corkum, B., 2002, Hoek-Brown criterion - 2002 edition, Proc. NARMS-TAC Conf., Toronto, 267-273. 

  7. Hoek, E., Carter, T.G. and Diederichs, M.S., 2013, Quantification of the Geological Strength Index chart, Proc. 47th US Rock Mech./Geomech. Sympo., San Francisco, ARMA 13-672. 

  8. Hoek, E. and Marinos, P., 2000, Predicting tunnel squeezing problems in weak heterogeneous rock masses, Tunnels and Tunnelling International Part 1 - November 2000, Part 2 - December 2000. 

  9. Lee, Y.-K., Pietruszczak, S., 2017, Analytical representation of Mohr envelope approximating the generalized Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 100, 90-99. 

  10. Lee, Y.K., 2018, Approximate shear strength formula implied in the generalized Hoek-Brown failure criterion, Tunnel & Underground Space (J. Korean Soc. Rock Mech.), 28(5), 426-441. 

  11. Mansouri M., Imani, M. and Fahimifar, A., 2019, Ultimate bearing capacity of rock masses under square and rectangular footings, Int. J. Rock Mech. Min. Sci., 111, 1-9. 

  12. Marinos, P.G., Marinos, V. and Hoek, E., 2007, The geological strength index (GSI): A characterization tool for assessing engineering properties for rock masses, Proc. ISRM Workshop W1 (Eds. M. Romana, A. Perucho and C. Olalla), Madrid, Spain, 87-94. 

  13. Rojat, F., Labiouse, V. and Mestat, P., 2015, Improved analytical solutions for the response of underground excavations in rock mass satisfying the generalized Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 79, 193-204. 

  14. Saada, Z., Maghous, S. and Garnier, D., 2011, Seismic bearing capacity of shallow foundation near rock slopes using the generalized Hoek-Brown criterion, Int. J. Numer. Anal. Meth. Geomech., 35, 724-748. 

  15. Sofianos, A.I., Nomikos, P.P., 2006, Equivalent Mohr-Coulomb and generalized Hoek-Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock, Int. J. Rock Mech. Min. Sci., 43, 683-704. 

  16. Sorensen, E.S., Clausen, J. and Damkilde, L., 2015, Finite element implementation of the Hoek-Brown material model with general strain softening behavior, Int. J. Rock Mech. Min. Sci., 78, 163-174. 

  17. Xu, J. and Yang X., 2018, Seismic stability analysis and charts of a 3D rock slope in Hoek-Brown media, Int. J. Rock Mech. Min. Sci., 112, 64-76. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로