$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 바이오 물질 분석을 위한 금속 나노입자를 이용한 SERS 분석 연구동향
A Review of SERS for Biomaterials Analysis Using Metal Nanoparticles 원문보기

세라미스트 = Ceramist, v.22 no.3, 2019년, pp.281 - 300  

장의순 (금오공과대학교 응용화학과)

Abstract AI-Helper 아이콘AI-Helper

Surface enhanced Raman scattering (SERS) was first discovered in 1974 by an unexpected Raman signal increase from Pyridine adsorbed on rough Ag electrode surfaces by the M. Fleishmann group. M. Moskovits group suggested that this phenomenon could be caused by surface plasmon resonance (SPR), which i...

Keyword

질의응답

핵심어 질문 논문에서 추출한 답변
라만 비탄성 산란을 통하여 무엇을 확인할 수 있는가? 23),24) 반대로 라만 활성 분자가 빛을 흡수하여 진동 에너지를 방출하면서 산란된 빛의 파장이 짧아지는 효과를 Anti-stokes 효과라 한다(그림 1).23),24) 라만 비탄성 산란을 통해 방출되는 에너지는 분자 구조와 밀접한 관계에 있으며 라만 활성 분자들 마다 진동모드의 고유한 지문 정보가 나타나기 때문에 이를 분석하면 분자구조를 확인할 수 있다.
레일리 탄성 산란이란? 빛이 어떤 매질을 통과할 때, 빛의 일부는 산란되어 진행방향에서 벗어나 다른 방향으로 진행하는데 이때 원래의 에너지를 그대로 유지하면서 산란되는 과정을 레일리 탄성 산란(Rayleigh elastic scattering)이라 하고 에너지를 잃거나 얻으면서 산란되는 과정을 라만 비탄성 산란(Raman inelastic scattering)이라 한다.23),24) 라만 비탄성 산란에서 라만 활성 분자가 빛을 흡수하여 진동에너지 (Vibrational energy)가 증가되면 산란된 빛의 에너지가 감소하면서 파장이 길어지게 되는데 이를 Stokes 효과라 한다.
(SERS) 현상의 발현 원인은? Fleishmann 그룹에 의하여 거친 Ag 전극 표면에 흡착된 Pyridine으로부터 예상치 못했던 라만 신호 증가로 처음으로 발견되었다.1) 이러한 현상은 M. Moskovits등에 의하여 외부 광원에 의한 금속 나노구조체 표면에서 자유전자들의 집단 진동(Collective oscillations)인 Surface plasmon resonance(SPR)에 의해 기원할 수 있음이 제시 되었다.2-14) 이후 약 40년의 연구개발을 통해 SERS는 생체분자 분석기술로써 크게 주목받고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (87)

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., 26 [2] 163-166 (1974). 

  2. M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," J. Chem. Phys., 69 [9] 4159-4161 (1978). 

  3. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys., 57 [3] 783-826 (1985). 

  4. J. A. Creighton, C. G. Blatchford, and M. G. Albrecht, "Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength" J. Chem. Soc., Faraday Trans. 2, 75, 790-798(1979). 

  5. Y. J. Chen, W. P. Chen, and E. Burstein, "Surface-electromagnetic-wave-enhanced Raman scattering by overlayers on metals", Phys. Rev. Lett., 36 [20], 1207-1210 (1976). 

  6. R. Dornhaus, R. E. Benner, R. K. Chang, and I. Chabay, "Surface plasmon contribution to SERS", Surf. Sci., 101 [1-3], 367-373 (1980). 

  7. B. Pettinger, U. Wenning, and H. Wetzel, "Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes", Surf. Sci., 101[1-3], 409-416 (1980). 

  8. J. C. Tsang, J. R. Kirtley, and T. N. Theis, "Surface plasmon polariton contributions to strokes emission from molecular monolayers on periodic Ag surfaces", Solid State Com., 35 [9], 667-670 (1980). 

  9. J. I. Gersten, "The effect of surface roughness on surface enhanced Raman scattering", J. Chem. Phys., 72 [10], 5779-5780 (1980). 

  10. J. Gersten, and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces", J. Chem. Phys., 73 [7], 3023-3037. 

  11. S. L. McCall, and P. M. Platzman, "Raman scattering from chemisorbed molecules at surfaces", Phys. Rev. B: Condens. Matter Mater. Phys., 22 [4], 1660-1662. 

  12. M. Kerker, Acc. Chem. Res., "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids", 17 [8], 271-277 (1984). 

  13. H. Metiu, and P. Das, "The electromagnetic theory of surface enhanced spectroscopy", Annu. Rev. Phys. Chem., 35, 507-536 (1984). 

  14. G. C. Schatz, "Theoretical studies of surface enhanced Raman scattering", Acc. Chem. Res., 17 [10], 370-376 (1984). 

  15. S. -Y. Ding, E. -M. You, Z. -Q. Tian, and M. Moskovits, "Electromagnetic theories of surface-enhanced Raman spectroscopy", Chem. Soc. Rev., 46, 4042-4076 (2017). 

  16. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface enhanced Raman scattering (SERS)", Phys. Rev. Lett., 78 [9], 1667-1670 (1997). 

  17. S. Nie, and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering", Science, 275 [5303], 1102-1106 (1997). 

  18. D. S. Grubisha, R. J. Lipert,; H.-Y. Park, J. Driskell, and M. D. Porter, "Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels", Anal. Chem., 75 [21], 5936-5943 (2003). 

  19. X. Li, S. Ye, and X. Luo, "Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification" Chem. Com, 52 [67], 10269-10272 (2016). 

  20. C. Jiang, R. Liu, G. Han, and Z. Zhang, "A chemically reactive Raman probe for ultrasensitively monitoring and imaging the in vivo generation of femtomolar oxidative species as induced by antitumor drugs in living cells" Chem. Com., 49 [59], 6647-6649 (2013). 

  21. G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, "Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications", Appl. Spect., 65 [8], 825-837 (2011). 

  22. S. Schluecker, "Surface-enhanced Raman spectroscopy: concepts and chemical applications", Angew. Chem., Int. Ed., 53 [19], 4756-4795 (2014). 

  23. R. L. McCreery, "Raman spectroscopy for chemical analysis", Vol. 157, Ed. By J. D. Winefordner, John Wiley & Sons, Inc. Pub. Press., New York, NY, USA, 2000. 

  24. D. A. Long, "The Raman effect : a unified treatment of the theory of Raman scattering by molecules", John Wiley & Sons, Inc. Pub. Press., New York, NY, USA, 2002. 

  25. D. Tuschel, "Raman thermometry", Spectroscopy, 31 [12], 8-13 (2016). 

  26. R. Meier, and B. Kip, "Determination of the local temperature at a sample during Raman experiments using stokes and anti-stokes Raman bands", Appl. Spect., 44 [4], 707-711 (1990). 

  27. R. Meier, and B. Kip, "Determination of the local temperature at a sample during Raman experiments using stokes and anti-stokes Raman bands", Appl. Spect., 44 [4], 707-711 (2000). 

  28. R. Aroca, "Surface-enhanced vibrational spectroscopy", John Wiley & Sons, Inc. Pub. Press., New York, NY, USA, 2006. 

  29. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, and L. Fabris, "A review on surface-enhanced Raman scattering" Biosensors, 9 [57], 1-99 (2019). 

  30. C. Zong, M. Xu, L. -J. Xu, T. Wei, X. Ma, X. -S. Zheng, R. Hu, and B. Ren, "Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges", Chem. Rev., 118 [10], 4946-4980 (2018). 

  31. R. Pilot, R. Signorini, and L. Fabris, "Surface-enhanced Raman spectroscopy: principles, substrates, and applications" pp. 89-164 in Metal nanoparticles and clusters: Advances in synthesis, properties and applications, By F. L. Deepak Ed., Springer Press, Cham, Switzerland, 2018. 

  32. P. G. Etchegoin, and E. C. Le Ru, "A perspective on single molecule SERS: Current status and future challenges" Phys. Chem. Chem. Phys., 10 [40], 6079-6089(2008). 

  33. K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, O. Kurtulus, S. H. Lee, N. C. Lindquist, S. -H. Oh, and C. L. Haynes, "Recent progress in SERS biosensing" Phys. Chem. Chem. Phys. 13 [24], 11551-11567 (2011). 

  34. E. C. Le Ru, C. Galloway, P. G. Etchegoin, "On the connection between optical absorption/extinction and SERS enhancements", Phys. Chem. Chem. Phys., 8 [26], 3083-3087 (2006). 

  35. A. Otto, "The "chemical" (electronic) contribution to surface-enhanced Raman scattering", J. Raman Spect., 36 [6-7], 497-509 (2005). 

  36. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss", J. Phys. Chem. B, 106 [4], 853-860 (2002). 

  37. J. R. Lombardi, and R. L. Birke, "A unified view of surface-enhanced Raman scattering", Acc. Chem. Res., 42, 734-742 (2009). 

  38. S. -Y. Ding, J. Yi, J.-F. Li, B. Ren, D.-Y. Wu, R. Panneerselvam, and Z.-Q. Tian, "Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials", Nat. Rev. Mater., 1, 16021 (2016). 

  39. E. C. Le Ru, and P. Etchegoin, "Principles of surface enhanced Raman spectroscopy", Elsevier Sci. Press, Amsterdam, The Netherlands, 2009. 

  40. M. J. Mulvihill, X. Y. Ling, J. Henzie, and P. Yang, "Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS", J. Am. Chem. Soc., 132 [1], 268-274 (2010). 

  41. M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, "Molecular plasmonics for nanoscale spectroscopy", Chem. Soc. Rev., 43 [4], 1230-1247 (2014). 

  42. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates", Nano Lett., 5 [8], 1569-1574 (2005). 

  43. J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, "Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes", Chem. Phys. Lett., 427 [1-3], 122-126 (2006). 

  44. B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z.-Y. Li, D. Ginger, and Y. Xia, "Synthesis and optical properties of silver nanobars and nanorice", Nano Lett., 7 [4], 1032-1036 (2007). 

  45. J. Fang, S. Liu, and Z. Li, "Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor", Biomaterials, 32 [21], 4877-4884 (2011). 

  46. M. Rycenga, M. H. Kim, P. H. C. Camargo, C. Cobley, Z. -Y. Li, and Y. Xia, "Surface-enhanced Raman scattering: Comparison of three different molecules on single-crystal nanocubes and nanospheres of silver", J. Phys. Chem. A, 113 [16], 3932-3939 (2009). 

  47. J. -F. Li, Y. -J. Zhang, S. -Y. Ding, R. Panneerselvam, and Z. -Q. Tian, "Core-shell nanoparticle-enhanced Raman spectroscopy", Chem. Rev., 117 [7], 5002-5069 (2017). 

  48. R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy", Chem. Phys. Lett., 318 [1-3], 131-136 (2000). 

  49. M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope", Appl. Phys. Lett., 76 [21], 3130-3132 (2000). 

  50. N. Hayazawa, Y. Inouye, Z. Sekkat and S. Kawata, "Metallized tip amplification of near-field Raman scattering", Opt. Commun., 183 [1-4], 333-336 (2000). 

  51. B. Pettinger, G. Picardi, R. Schuster and G. Ertl, "Surface enhanced Raman spectroscopy: Towards single molecule spectroscopy", Electrochem., 68 [12], 942-949 (2000). 

  52. L. Meng, T. X. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, "Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration", Optics Express, 23 [11], 13804-13813 (2015). 

  53. N. Kazemi-Zanjani, S. Vedraine, and F. Lagugne-Labarthet, "Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light", Optics Express, 21 [21], 25271-25276 (2013). 

  54. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy", Nature, 464 [7287], 392-395 (2010). 

  55. J. -F. Li, S. -Y. Ding, Z. -L. Yang, M. -L. Bai, J. R. Anema, X. Wang, A. Wang, D. -Y. Wu, B. Ren, S. -M. Hou, T. Wandlowski, and Z. -Q. Tian, "Extraordinary Enhancement of Raman Scattering from Pyridine on Single Crystal Au and Pt Electrodes by Shell-Isolated Au Nanoparticles", J. Am. Chem. Soc., 133 [40], 15922-15925 (2011). 

  56. Y. -F. Huang, C. -Y. Li, I. Broadwell, J. -F. Li, D. -Y. Wu, B. Ren, and Z. -Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy of pyridine on smooth silver electrodes", Electrochim. Acta, 56 [28], 10652-10657 (2011). 

  57. S. -Y. Ding, J. Yi, J. -F. Li, and Z.-Q. Tian, "A theoretical and experimental approach to shellisolated nanoparticle-enhanced Raman spectroscopy of single-crystal electrodes", Surf. Sci., 631, 73-80 (2015). 

  58. D. P. Butcher, S. P. Boulos, C. J. Murphy, R. C. Ambrosio, and A. A. Gewirth, "Face-dependent shell-isolated nanoparticle enhanced Raman spectroscopy of 2,2′-bipyridine on Au(100) and Au(111)", J. Phys. Chem. C, 116 [8], 5128-5140 (2012). 

  59. N. R. Honesty, and A. A. Gewirth, "Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly)", J. Raman Spectrosc., 43 [1], 46-50 (2012). 

  60. A. V. Rudnev, A. Kuzume, Y. Fu, and T. Wandlowski, "CO oxidation on Pt(100): New insights based on combined voltammetric, microscopic and spectroscopic experiments", Electrochim. Acta, 133, 132-145 (2014). 

  61. C. -Y. Li, J. -C. Dong, X. Jin, S. Chen, R. Panneerselvam, A. V. Rudnev, Z.-L. Yang, J.-F. Li, T. Wandlowski, and Z.-Q. Tian, "In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy", J. Am. Chem. Soc., 137 [24], 7648-7651 (2015). 

  62. A. Bonifacio, S. Cervo, and V. Sergo, "Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications", Anal. Bioanal. Chem., 407 [27], 8265-8277 (2015). 

  63. S. Ma, Q. Li, Y. Yin, J. Yang, and D. Liu, "Interference-free surface enhanced Raman scattering tags for single-cell molecular imaging with a high signal-to-background ratio", Small, 13 [15], 1603340 (2017). 

  64. N. M. S. Sirimuthu, "Investigation of the stability of labelled nanoparticles for SE(R) RS measurements in cells" Chem. Com., 47 [14], 4099-4101 (2011). 

  65. Y. Yin, Q. Li, S. Ma, H. Liu, B. Dong, J. Yang, and D. Liu, "Prussian blue as a highly sensitive and background-free resonant Raman reporter", Anal. Chem., 89[], 1551-1557 (2017). 

  66. K. V. Kong, Z. Lam, W. D. Goh, W. K. Leong, and M. Olivo, "Metal carbonyl-gold nanoparticle conjugates for live-cell SERS imaging", Angew. Chem., Int. Ed., 51 [3], 9796-9799 (2012). 

  67. Z. -L. Song, Z. Chen, X. Bian, L. -Y. Zhou, D. Ding, H. Liang, Y. -X. Zou, S. -S. Wang, L. Chen, C. Yang, X. -B. Zhang, and W. Tan, "Alkynefunctionalized superstable graphitic silver nanoparticles for Raman imaging", J. Am. Chem. Soc., 136 [39], 13558-13561 (2014). 

  68. S. Habuchi, and J. Hofkens, "Single-molecule surface-enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein EGFP", Surf. Enhanced Raman Scattering, 103, 297-312 (2006). 

  69. K. Singhal and A. K. Kalkan, "Surface-enhanced Raman scattering captures conformational changes of single photoactive yellow protein molecules under photoexcitation", J. Am. Chem. Soc., 132 [2], 429-431 (2010). 

  70. H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering", Phys. Rev. Lett., 83 [21], 4357-4360 (1999). 

  71. X. X. Han, G. G. Huang, B. Zhao and Y. Ozaki, "Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering", Anal. Chem., 81 [9], 3329-3333 (2009). 

  72. I. Bruzas, W. Lum, Z. Gorunmez, and L. Sagle, "Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond", Analyst, 143 [17], 3990-4008 (2018). 

  73. A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, "Raman spectroscopy of proteins: a review", J. Raman Spect., 44 [8], 1061-1076 (2013). 

  74. K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska, "Raman spectroscopy of lipids: a review", J. Raman Spect., 46 [1], 4-20 (2015). 

  75. T. Brule, H. Yockell-Lelievre, A. Bouhelier, J. Margueritat, L. Markey, A. Leray, A. Dereux, and E. Finot, "Spectral pointillism of enhanced Raman scattering for accessing structural and conformational information on single protein", J. Phys. Chem. C, 118 [1], 17975-17982 (2014). 

  76. T. Brule, A. Bouhelier, A. Dereux, and E. Finot, "Discrimination between single protein conformations using dynamic SERS", ACS Sens., 1 [6], 676-680 (2016). 

  77. L. -J. Xu, Z. -C. Lei, J. Li, C. Zong, C. J. Yang, and B. Ren, "Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity", J. Am. Chem. Soc., 137 [15], 5149-5154 (2015). 

  78. L. -J. Xu, C. Zong, X. -S. Zheng, P. Hu, J. -M. Feng, and B. Ren, "Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles", Anal. Chem., 86 [4], 2238-2245 (2014). 

  79. L. Guerrini, Z. Krpetic, D. van Lierop, R. A. Alvarez-Puebla, and D. Graham, "Direct surface-enhanced Raman scattering analysis of DNA duplexes", Angew. Chem., Int. Ed., 54 [4], 1144-1148 (2015). 

  80. E. Garcia-Rico, R. A. Alvarez-Puebla, and L. Guerrini, "Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications", Chem. Soc. Rev., 47 [13], 4909-4923, 2018. 

  81. E. Papadopoulou, and S. E. J. Bell, "Label-free detection of nanomolar unmodified single- and double-stranded DNA by using surface-enhanced Raman spectroscopy on Ag and Au colloids", Chem. - Eur. J., 18 [17], 5394-5400 (2012). 

  82. Y. Yin, Q. Li, S. Ma, H. Liu, B. Dong, J. Yang, and D. Liu, "Prussian blue as a highly sensitive and background-free resonant Raman reporter", Anal. Chem., 89 [3], 1551-1557 (2017). 

  83. Y. Chen, J. -Q. Ren, X. -G. Zhang, D. -Y. Wu, A. -G. Shen, and J. -M. Hu, "Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging", Anal. Chem., 88 [12], 6115-6119 (2016). 

  84. D. Radziuk, R. Schuetz, A. Masic, and H. Moehwald, "Chemical imaging of live fibroblasts by SERS effective nanofilm", Phys. Chem. Chem. Phys., 16 [44], 24621-24634 (2014). 

  85. J. Ando, K. Fujita, N. I. Smith, and S. Kawata, "Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles", Nano Lett., 11 [12], 5344-5348 (2011). 

  86. C. L. Zavaleta, B. R. Smith, I. Walton, W. Doering, G. Davis, B. Shojaei, M. J. Natan, and S. S. Gambhir, "Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy", PNAS, 106 [32], 13511-13516 (2009). 

  87. Y. W. Wang, S. Kang, A. Khan, P. Q. Bao, and J. T. C. Liu, "In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles", Biomed. Opt. Express, 6 [10], 3714-3723 (2015). 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로