$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

악성 스크립트 패턴 분석을 통한 악성코드 탐지 기법

A Malware Detection Method using Analysis of Malicious Script Patterns

초록

최근 IoT, 클라우드 컴퓨팅 기술이 발전하면서 IoT 디바이스를 감염시키는 악성코드와 클라우드 서버에 랜섬웨어를 유포하는 신종 악성코드가 등장하여 보안 위협이 증가하고 있다. 본 연구에서는 기존의 시그니처 기반의 탐지 방식과 행위기반의 탐지 방식의 단점을 보완할 수 있도록 난독화된 스크립트 패턴을 분석하여 점검하는 탐지 기법을 제안한다. 제안하는 탐지 기법은 웹사이트 통해 유포되는 악성 스크립트 유형을 분석하여 유포패턴을 도출한 후, 도출된 유포패턴을 등록하여 점검함으로써 기존의 탐지룰 기반의 탐지속도를 유지하면서도 제로데이 공격에 대한 탐지가 가능한 악성 스크립트 패턴분석 기반의 악성코드 탐지 기법이다. 제안한 기법의 성능을 검증하기 위해 프로토타입 시스템을 개발하였으며, 이를 통해 총 390개의 악성 웹사이트를 수집, 분석에 의해 도출된 10개의 주요 악성 스크립트 유포패턴을 실험한 결과, 전체 항목 평균 약 86%의 높은 탐지율을 보였으며, 기존의 탐지룰 기반의 점검속도를 유지하면서도 제로데이 공격까지도 탐지가 가능한 것을 실험으로 입증하였다.

Abstract

Recently, with the development of the Internet of Things (IoT) and cloud computing technologies, security threats have increased as malicious codes infect IoT devices, and new malware spreads ransomware to cloud servers. In this study, we propose a threat-detection technique that checks obfuscated script patterns to compensate for the shortcomings of conventional signature-based and behavior-based detection methods. Proposed is a malicious code-detection technique that is based on malicious script-pattern analysis that can detect zero-day attacks while maintaining the existing detection rate by registering and checking derived distribution patterns after analyzing the types of malicious scripts distributed through websites. To verify the performance of the proposed technique, a prototype system was developed to collect a total of 390 malicious websites and experiment with 10 major malicious script-distribution patterns derived from analysis. The technique showed an average detection rate of about 86% of all items, while maintaining the existing detection speed based on the detection rule and also detecting zero-day attacks.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일