$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전기-공기역학적 렌즈를 이용한 가상임팩터 포집효율에 관한 수치적 연구
Numerical Investigation of Collection Efficiency of Virtual Impactor with Electro-Aerodynamic Lens 원문보기

한국기계가공학회지 = Journal of the Korean Society of Manufacturing Process Engineers, v.18 no.7, 2019년, pp.63 - 70  

(한양대학교 기계공학부) ,  육세진 (한양대학교 기계공학부)

Abstract AI-Helper 아이콘AI-Helper

An electro-aerodynamic lens for improving the performance of virtual impactor has been proposed in this study. ANSYS FLUENT Release 16.1 was used for numerical analysis of virtual impactor with and without the electro-aerodynamic lens, used to collimate the incoming aerosol particles into a particle...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Numerical analysis was performed to investigate the performance of the virtual impactor with and without electro-aerodynamic lens. The electro-aerodynamic lens, proposed in this study, was equipped with three electrodes, i.e. two grounded electrodes and one high-voltage central electrode, across which electric voltage was applied for creating electric field within the lens. The performance of virtual impactor was determined by using the electro-aerodynamic lens before the virtual impactor.
  • The fluid flow simulation was performed by using a computational fluid dynamics (CFD) code, ANSYS FLUENT Release16.1, and a fluid magneto-hydrodynamic (MHD) module was utilized for incorporating the effect of electric potential along with fluid flow. Grid independence test was conducted for the geometries of virtual impactor and electro-aerodynamic lens to determine the optimum number of computational cells for the analysis.
  • However, we believe that virtual impactor performance can be further improved by making it capable of sampling submicron particles under normal pressure condition and by increasing the sampling accuracy through elimination of fine particle contamination in the minor flow. Therefore, in this study, we propose an electro-aerodynamic lens which uses the combined aerodynamic and electrostatic effects for collimating the incoming aerosol particles into a thin particle-beam. The electro-aerodynamic lens is connected to the inlet of virtual impactor, so that the collimated beam of aerosol particles can be supplied to the virtual impactor for sampling.

대상 데이터

  • [11]. The virtual impactor consisted of two nozzles, that is, acceleration nozzle and collection nozzle. The width of the acceleration nozzle was 1 mm, and that of the collection nozzle was 1.

이론/모형

  • 3 kPa were assumed for numerical analysis. A SIMPLE algorithm was used to couple velocity and pressure for solving energy, continuity, momentum, and electric potential equations. The convergence criteria were kept at 10–6.
  • Similarly, the boundary conditions considered for the MHD analysis of electro-aerodynamic lens were conductive at the electrode and insulation at all walls. Discrete phase model (DPM), provided in the FLUENT code, was used for calculating the trajectories of particles within the virtual impactor and the electro-aerodynamic lens. The DPM was based on Lagrangian reference frame.
본문요약 정보가 도움이 되었나요?

참고문헌 (13)

  1. 10.1080/00028896509342711 Hounam, R. F., Sherwood, R. J., “The Cascade Centripeter: A Device for Determining the Concentration and Size Distribution of Aerosols,” American Industrial Hygiene Association Journal, Vol. 26, pp. 122-131, 1965. 

  2. 10.1080/00022470.1966.10468438 Conner, W. D., “An Inertial-Type Particle Separator for Collecting Large Samples,” Journal of the Air Pollution Control Association, Vol. 16, pp. 35-38, 1966. 

  3. 10.1021/es60105a011 Dzubay, T. G., Stevens, R. K., “Ambient Air Analysis with Dichotomous Sampler and X-ray Fluorescence Spectrometer,” Environmental Science and Technology, Vol. 9, pp. 663-668, 1975. 

  4. 10.1063/1.1134504 Forney, L. J., “Aerosol Fractionator for Large- Scale Sampling,” Review of Scientific Instruments, Vol. 47, pp. 1264-1269, 1976. 

  5. 10.1021/es60168a019 Marple, V. A., Chien, C. M., “Virtual Impactors: A Theoretical Study,” Environmental Science and Technology, Vol. 14, pp. 976-985, 1980. 

  6. 10.4209/aaqr.2015.06.0383 Wada, M., Tsukada, M., Namiki, N., Szymanski, W. W., Noda, N., Makino, H., Kanaoka, C., Kamiya, H., “A Two-Stage Virtual Impactor for In-Stack Sampling of PM2.5 and PM10 in Flue Gas of Stationary Sources,” Aerosol and Air Quality Research, Vol. 16, pp. 36-45, 2016. 

  7. 10.1016/0021-8502(87)90056-5 Chen, B. T., Yeh, H. C., “An Improved Virtual Impactor: Design and Performance,” Journal of Aerosol Science, Vol. 18, pp. 203-214, 1987. 

  8. 10.1080/02786828808959205 Loo, B. W., Cork, C. P., “Development of High Efficiency Virtual Impactors,” Aerosol Science and Technology, Vol. 9, pp. 167-176, 1988. 

  9. 10.1080/02786829308959611 Chein, H., Lundgren, D. A., “A Virtual Impactor with Clean Air Core for the Generation of Aerosols with Narrow Size Distributions,” Aerosol Science and Technology, Vol. 18, pp. 376-388, 1993. 

  10. 10.1016/S0021-8502(00)00048-3 Ding, Y., Koutrakis, P., “Development of a Dichotomous Slit Nozzle Virtual Impactor,” Journal of Aerosol Science, Vol. 31, pp. 1421-1431, 2000. 

  11. 10.1080/02786826.2013.862333 Lee, H., Jo, D. H., Kim, W. G., Yook, S. J., Ahn, K. H., “Effect of an Orifice on Collection Efficiency and Wall Loss of a Slit Virtual Impactor,” Aerosol Science and Technology, Vol. 48, pp. 121-127, 2014. 

  12. 10.1007/s12206-018-0454-8 Heo, J. E., Zahir, M. Z., Park, H., Seo, J., Park, H., Yook, S. J., “Effect of Horizontal Inlet on Slit-Nozzle Virtual Impactor Performance,” Journal of Mechanical Science and Technology, Vol. 32, pp. 2419-2424, 2018. 

  13. 10.1080/02786820601148262 Choi, Y., Kim, S., “An Improved Method for Charging Submicron and Nano Particles with Uniform Charging Performance,” Aerosol Science and Technology, Vol. 41, pp. 259-265, 2007. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로