$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Kernel Fisher Discriminant Analysis for Natural Gait Cycle Based Gait Recognition 원문보기

Journal of information processing systems, v.15 no.4, 2019년, pp.957 - 966  

Huang, Jun (College of Modern Science and Technology, China Jiliang University) ,  Wang, Xiuhui (College of Information Engineering, China Jiliang University) ,  Wang, Jun (College of Information Engineering, China Jiliang University)

Abstract AI-Helper 아이콘AI-Helper

This paper studies a novel approach to natural gait cycles based gait recognition via kernel Fisher discriminant analysis (KFDA), which can effectively calculate the features from gait sequences and accelerate the recognition process. The proposed approach firstly extracts the gait silhouettes throu...

Keyword

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The paper presents a new gait recognition method based on KFDA, as shown in Fig. 1. First, the GEI is calculated from gait cycle.
  • The results of experiment prove that our method is effective for gait recognition. The main contributions of this paper include (1) a new feature extraction algorithm is proposed based on natural gait cycles, and the observation vector set is constructed using the extracted features. In order to improve the algorithm robustness, the algorithm also adopts the feature combination of gait image and its region bounded by legs.
  • The main contributions of this paper include (1) a new feature extraction algorithm is proposed based on natural gait cycles, and the observation vector set is constructed using the extracted features. In order to improve the algorithm robustness, the algorithm also adopts the feature combination of gait image and its region bounded by legs. (2) KFDA method is used to refine the extracted gait features, and low-dimensional feature vectors for each gait videos can be got.
  • 3, we can see the outermost outlines of the human body have changed when human is walking at condition of carrying backpacks and other objects, which can lead to poor gait recognition robustness [19]. Since changes on top part of the body is very little and lower part of the body (such as legs ) has obvious change in normal, carrying and clothing conditions, the paper adopts the method in [20] to represent the gait feature by both gait silhouettes image and energy image in the local outline of the legs. Fig.
  • Aiming at this problem, we add μI (I represents a unit matrix and μ is a coefficient) to the Q matrix, and Qμ = Q + μI, which can let Q become a nonsingular and use a generalized eigenvalue equation to solve.
  • Our experiments use 60 subjects at 90º and normal conditions that is each subject has 6 sequences, each sequence contains 2 gait cycles and every sequence have 12 gait cycles. In the experiments, 2 gait sequences and 4 gait cycles are selected for training and another 4 gait sequences and 8 gait cycles for testing. We carried out 15 experiments on CASIA B and calculate the average.
  • Due to the small number of samples, to obtain the unbiased estimation of the correct recognition rate, leave-one-out cross-validation method is adopted to conduct the experiments. The paper adopts cumulative match score (CMS) [22] to evaluate the experiment results and presents recognition rates of Rank 1 and Rank 5. In order to evaluate the GCI-GEI feature extraction effect and the KFDA dimension reduction and classification ability, the recognition rate of our method is compared to other exiting algorithms, and the results are showed in Table 1.
  • A database consisting of 1,870 sequences of the 122 subjects based the USF Human ID database [23] is divided into 1 set for training and 10 probes labeled from A to J for test, which based on 3 covariates: normal, walking, and carrying condition. Being different from experiment on CASIA, this experiment adopts weighted mean recognition rate to evaluate the experiment results. To demonstrate the advantages of KFDA, we choose the traditional algorithms LDA, PCA and DCV, and manifold earning algorithm LPP for comparison.
  •  This paper proposes a new algorithm for gait recognition based on GEI and KFDA. The proposed algorithm firstly proposed a new feature extraction algorithm based on natural gait cycles, and the observation vector set is constructed using the extracted features by combination of gait image and its region bounded by legs. Then the expansion vector of the GEI by column is used as the input to get the optimal subspace Wopt and αopt, the projection on αopt is calculated by the GEI observation vectors.

이론/모형

  • Due to the small number of samples, to obtain the unbiased estimation of the correct recognition rate, leave-one-out cross-validation method is adopted to conduct the experiments. The paper adopts cumulative match score (CMS) [22] to evaluate the experiment results and presents recognition rates of Rank 1 and Rank 5.
본문요약 정보가 도움이 되었나요?

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로