$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

정상성 및 비정상성 수문자료의 지역빈도해석
Regional frequency analysis for stationary and nonstationary hydrological data 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.52 no.10, 2019년, pp.657 - 669  

허준행 (연세대학교 공과대학 건설환경공학과) ,  김한빈 (연세대학교 공과대학 건설환경공학과)

초록
AI-Helper 아이콘AI-Helper

수공구조물의 설계 시 빈도해석을 통해 수문자료의 통계적 특성을 고려하여 설계빈도에 대한 정확한 확률수문량을 산정하는 것은 매우 중요한 절차이다. 지역빈도해석은 대상 지점의 자료만을 이용하여 확률수문량을 산정하는 지점빈도해석과 달리 수문학적으로 동질한 것으로 판단되는 주변지점들의 자료를 모두 포함하여 빈도해석을 수행하므로 미계측 지점 또는 자료 보유년수가 짧은 지점에서 보다 정확한 확률수문량 산정이 가능하다. 본 총설논문에서는 이러한 지역빈도해석 기법을 수문자료의 특성에 따라 정상성 지역빈도해석과 비정상성 지역빈도해석으로 구분하고, 각 방법의 기본이론과 절차 및 관련 연구를 홍수지수법을 중심으로 상세히 설명하였으며 최신 연구동향을 정리하였다. "홍수량 산정 표준지침"의 개정을 통해 포함되는 정상성 지역빈도해석에 대해 언급하고, 비정상성 지역빈도해석과 관련한 향후 연구주제를 기술하며 논문을 마무리 한다.

Abstract AI-Helper 아이콘AI-Helper

To estimate accurate design quantiles considering statistical characteristics of hydrological data is one of the most important procedures in the design of hydraulic structures. While at-site frequency analysis estimates design quantile using observed data at a site of interest, regional frequency a...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 총설논문에서는 현재 전 세계적으로 가장 널리 적용되고 있는 홍수지수법을 중심으로 정상성 및 비정상성 수문자료에 대한 지역빈도해석과 관련하여 현재까지 수행되어온 연구 및 그 절차를 소개하고 지역빈도해석 기법에 대한 최신 연구 동향을 살펴보고자 한다. 2장에서는 홍수지수법 기반의 정상성 지역빈도해석에 대한 기본적인 설명 및 관련 선행연구, 적용 절차를 상세하게 기술하며, 3장에서는 지역빈도해석에서의 비정상성 적용 원리와 다양한 비정상성 홍수지수모형 및 선행연구를 소개하고 비정상성 지역빈도해석 적용 절차를 상세히 기술한다.

가설 설정

  • Darlymple (1960)에 의해 제안된 홍수지수법은 다음과 같은 기본가정을 가진다. ① 한 지점에서 관측된 수문자료는 서로 독립이며 동일한 확률분포형을 가진다(iid 가정). ② 동질지역 내에서 관측된 수문자료들은 서로 다른 지점들 간에 종속성(dependence)이 없다.
  • ① 한 지점에서 관측된 수문자료는 서로 독립이며 동일한 확률분포형을 가진다(iid 가정). ② 동질지역 내에서 관측된 수문자료들은 서로 다른 지점들 간에 종속성(dependence)이 없다. ③ 지역 내 각 지점의 수문자료를 지점조정요소(site-specific scaling factor)로 표준화한 자료들은 동일한 확률분포형을 가진다.
  • 정상성 지역빈도해석에서는 대상 지점의 확률수문량 산정을 위해 동질지역으로 구분된 지역 내의 다른 지점들의 관측자료를 활용하게 되며, 이때 활용되는 모든 관측자료는 시간에 따라 자료 및 그 통계적 특성이 변하지 않는 정상성을 가정한다. 다양한 지역빈도해석 기법들 중 홍수지수법은 가장 대표적인 지역빈도해석 기법으로 전 세계적으로 널리 활용되고 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
수공구조물의 설계빈도은 어떤 기법인가? 일반적으로 수공구조물의 설계빈도는 100년 또는 200년 이상의 긴 재현기간을 가지므로 해당 재현기간에 대해 정확한 확률수문량을 산정하기 위해서는 대상 지점에 충분한 기간의 관측자료가 확보되어야 한다. 주어진 지점의 자료가 신뢰할 만한 확률수문량을 구하기에 충분한 자료기간을 가지고 있는 경우 지점빈도해석이 대상 지점의 관측자료를 가장 잘 반영할 수 있는 적합한 기법이라고 할 수 있다. 그러나 이에 대한 명확한 기준이 없고 대부분의 대상 지점은 수공구조물의 설계빈도 보다 짧은 기간의 수문관측자료를 보유하고 있으며 수문관측 자료가 없는 미계측 지점인 경우도 있다.
수문자료의 빈도해석은 무엇인가? 수문자료의 빈도해석은 관측된 자료에 대한 기본적인 통계량(평균, 분산, 변동계수, 표준편차, 왜곡도, 첨예도)에 적합한 확률분포형을 선정하고 이를 이용하여 수공구조물의 설계 및 분석에 필요한 확률수문량(설계수문량)을 산정하거나 이에 대응하는 설계빈도 또는 재현기간을 구하는 절차이다. 수공구조물의 설계빈도는 그 종류에 따라 상이하나 그 규모와 중요도에 따라 파괴 시에 막대한 인적·물적 피해를 초래할 수 있으므로 해당 설계빈도에 대해 수문자료의 통계적 특성을 고려한 정확한 확률수문량을 산정하는 것은 매우 중요하다고 할 수 있다.
수공구조물의 설계 시 중요한 절차는 무엇인가? 수공구조물의 설계 시 빈도해석을 통해 수문자료의 통계적 특성을 고려하여 설계빈도에 대한 정확한 확률수문량을 산정하는 것은 매우 중요한 절차이다. 지역빈도해석은 대상 지점의 자료만을 이용하여 확률수문량을 산정하는 지점빈도해석과 달리 수문학적으로 동질한 것으로 판단되는 주변지점들의 자료를 모두 포함하여 빈도해석을 수행하므로 미계측 지점 또는 자료 보유년수가 짧은 지점에서 보다 정확한 확률수문량 산정이 가능하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (78)

  1. Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., Mirabbasi, R., and Ouarda, T. B. M. J. (2017a). "Multivariate regional frequency analysis: Two new methods to increase the accuracy of measures." Advances in Water Resources, Vol. 107, pp. 290-300. 

  2. Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., and Mirabbasi, R. (2017b). "Regional bivariate modeling of droughts using L-comoments and copulas." Stochastic Environmental Research and Risk Assessment, Vol. 31, No. 5, pp. 1199-1210. 

  3. Agilan, V., and Umamahesh, N. V. (2017). "What are the best covariates for developing non-stationary rainfall Intensity-Duration- Frequency relationship?" Advances in Water Resources, Vol. 101, pp. 11-22. 

  4. Ahn, H., Shin, J. Y., Jeong, C., and Heo, J. H. (2018). "Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 5, pp. 383-393. 

  5. Alila, Y. (1999). "A hierarchical approach for the regionalization of precipitation annual maxima in Canada." Journal of Geophysical Research, Vol. 104, No. D24, pp. 31645-31655. 

  6. Asadi, P., Engelke, S., and Davison, A. (2018). "Optimal regionalization of extreme value distributions for flood estimation." Journal of Hydrology, Vol. 556, pp. 182-193. 

  7. Assis, L. C., Calijuri, M. L., Silva, D. D., Rocha, E. O., Fernandes, A. L. T., and Silva, F. F. (2018). "A model-based site selection approach associated with regional frequency analysis for modeling extreme rainfall depths in Minas Gerais state, Southeast Brazil." Stochastic Environmental Research and Risk Assessment, Vol. 32, pp. 469-484. 

  8. Bracken, C., Holman, K. D., Rajagopalan, B., and Moradkhani, H. (2018). "A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency Analysis." Water Resources Research, Vol. 54, No. 1, pp. 243-255. 

  9. Cannon, A. J. (2010). "A flexible nonlinear modeling framework for nonstationary generalized extreme value analysis in hydroclimatology." Hydrological Process, Vol. 24, No. 6, pp. 673-685. 

  10. Cassalho, F., Beskow, S., de Mello, C. R., de Moura, M. M., de Oliveira, L. F., and de Aguiar, M. S. (2019). "Artificial intelligence for identifying hydrologically homogeneous regions: A state-of-the-art regional flood frequency analysis." Hydrological Processes, Vol. 33, No. 7, pp. 1101-1116. 

  11. Chen, P. C., Wang, Y. H., You, G. J. Y., and Wei, C. C. (2017). "Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan." Journal of Hydrology, Vol. 545, pp. 197-211. 

  12. Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer, London. 

  13. Cunderlik, J. M., and Burn, D. H. (2003). "Non-stationary pooled flood frequency analysis." Journal of Hydrology, Vol. 276, No. 1-4, pp. 210-223. 

  14. Dalrymple, T. (1960). Flood-frequency analyses, U.S. Geological Survey Water-Supply paper, 1543-A. 

  15. Darwish, M. M., Fowler, H. J., Blenkinsop, S., and Tye, M. R. (2018). "A regional frequency analysis of UK sub-daily extreme precipitation and assessment of their seasonality." International Journal of Climatology, Vol. 38, No. 13, pp. 4758-4776. 

  16. De Michele, C., and Rosso, R. (2001). "Uncertainty assessment of regionalized flood frequency estimates." Journal of Hydrologic Engineering, Vol. 6, No. 6, pp. 453-459. 

  17. Drissia, T. K., Jothiprakash, V., and Anitha, A. B. (2019). "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach." Water Resources Management, Vol. 33, No. 3, pp. 1013-1037. 

  18. Fathian, F., and Dehghan, Z. (2019). "Using hybrid weighting-clustering approach for regional frequency analysis of maximum 24-hr rainfall based on climatic, geographical, and statistical attributes." International Journal of Climatology, Vol. 39, No. 11, pp. 4413-4428. 

  19. Forestieri, A., Conti, F. L., Blenkinsop, S., Cannarozzo, M., Fowler, H. J., and Noto, L. V. (2018). "Regional frequency analysis of extreme rainfall in Sicily (Italy)." International Journal of Climatology, Vol. 38, No. S1, pp. e698-e716. 

  20. Garcia, J. A., Martin, J., Naranjo, L., and Acero, F. J. (2018). "A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)." Hydrological Sciences Journal, Vol. 63, No. 6, pp. 878-894. 

  21. Hanel, M., Buishand, T. A., and Ferro, C. A. T. (2009). "A nonstationary index flood model for precipitation extremes in transient regional climate model simulations." Journal of Geophysical Research, Vol. 114, p. D15107. 

  22. Hardle, W., and Simar, L. (2003). Applied multivariate statistical analysis. Springer-Verlag, Heidelberg, Germany. 

  23. Heo, J. H. (2016). Statistical hydrology, Koomibook, Korea 

  24. Heo, J. H., Lee, Y. S., Shin, H., and Kim, K. D. (2007). "Application of regional rainfall frequency alaysis in South Korea(I): Rainfall Quantile Estimation." Journal of the Korean Society of Civil Engineers B, KSCE, Vol. 27, No. 2B, pp. 101-111. 

  25. Hosking, J. R. M., and Wallis, J. R. (1997). Regional frequency analysis: an approach based on l-moments. Cambridge University Press, New York. 

  26. Hosking, J. R. M., Wallis, J. R., and Wood, E. F. (1985). "An appraisal of the regional flood frequency procedure in the UK Flood Studies Report." Hydrological Sciences Journal, Vol. 30, No. 1, pp. 85-109. 

  27. Hosking, J. R. M., and Wallis, J. R. (1993). "Some statistics useful in regional frequency analysis." Water Resources Research, Vol. 29, No. 2, pp. 271-281. 

  28. Hu, C., Xia, J., She, D., Xu, C., Zhang, L., Song, Z., and Zhao, L. (2019). "A modified regional L-moment method for regional extreme precipitation frequency analysis in the Songliao River Basin of China." Atmospheric Research, Vol. 230, p. 104629. 

  29. Institute of Hydrology (IH) (1999). Flood estimation handbook. Institute of Hydrology, Wallingford, U.K. 

  30. Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: Synthesis Report, Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K., and Meyer, L.A., eds.]. IPCC, Geneva, Switzerland, p. 151. 

  31. Jang, H., Kim, S., and Heo, J. H. (2015). "Comparison study on the various forms of scale parameter for the nonstationary gumbel model." Journal of Korea Water Resources Association, KWRA, Vol. 48, No. 5, pp. 331-343. 

  32. Jung, T. H., Kim, H., Kim, H., and Heo, J. H. (2019). "Selection of climate indices for nonstationary frequency analysis and estimation of rainfall quantile." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 39, No. 1, pp. 165-174. 

  33. Kang, L., Jiang, S., Hu, X., and Li, C. (2019). "Evaluation of return period and risk in bivariate non-stationary flood frequency analysis." Water, Vol. 11, No. 1, p. 79. 

  34. Katz, R. W. (2013). "Statistical methods for nonstationary extremes." In: Extremes in a Changing Climate, Edited by AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorrooshian, S., Chapter 2, Springer, London. 

  35. Kwon, H. H., and Lee, J. J. (2011). "Seasonal rainfall outlook of Nakdong river basin using nonstationary frequency analysis model and climate information." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 5, pp. 339-350. 

  36. Kwon, H. H., Kim, J. Y., Kim, O. K., and Lee, J. J. (2013). "A development of regional frequency model based on hierarchical Bayesion model." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 1, pp. 13-24. 

  37. Kim, N. W., Lee, J. E., Lee, J., and Jung, Y. (2016a). "Regional frequency analysis using spatial data extension method:I. An empirical investigation of regional flood frequency analysis." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 5, pp. 439-450. 

  38. Kim, N. W., Lee, J. E., Lee, J., and Jung, Y. (2016b). "Regional frequency analysis using spatial data extension method:II. Flood frequency inference for ungaged watersheds." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 5, pp. 451-458. 

  39. Kim, S., Ahn, H., Shin, H., and Heo, J. H. (2016c). "Development of spatial dependence formula of FORGEX method using rainfall data in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 12, pp. 1007-1014. 

  40. Kim, J. W., Nam, W. S., Shin, J. Y., and Heo, J. H. (2008). "Regional frequency analysis of south korean rainfall data using FORGEX method." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 4, pp. 405-412. 

  41. Kim, J. Y., Kwon, H. H., and Lim, J. Y. (2014). "Development of hierarchical bayesian spatial regional frequency analysis model considering geographical characteristics." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 47, No. 5, pp. 469-482. 

  42. Kim, J. Y., Kwon, H. H., and Lee, B. S. (2017a). "A Bayesian GLM model based regional frequency analysis using scaling properties of extreme rainfalls." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 37, No. 1, pp. 29-41. 

  43. Kim, H., Kim, S., Shin, H., and Heo, J. H. (2017b). "Appropriate model selection methods for nonstationary generalized extreme value models." Journal of Hydrology, Vol. 547, pp. 557-574. 

  44. Kim, H. (2018). A Nonstationary population index flood model for regional frequency analysis. Ph. D. dissertation, Yonsei University, Seoul, South Korea. 

  45. Lee, Y. S., Heo, J. H., Nam, W. S., and Kim, K. D. (2007). "Application of regional rainfall frequency analysis in South Korea(II): Monte carlo simulation and determination of appropriate method." Journal of the Korean Society of Civil Engineers B, KSCE, Vol. 27, No. 2B, pp. 113-123. 

  46. Lescesen, I., and Dolinaj, D. (2019). "Regional flood frequency analysis of the pannonian basin." Water, Vol. 11, No. 2, p. 193. 

  47. Lettenmaier, D. P., Wallis, J. R., and Wood, E. F. (1987). "Effect of regional heterogeneity on flood Frequency estimaion." Water Resources Research, Vol. 23, No. 2, pp. 313-323. 

  48. Liang, Y., Liu, S., Guo, Y., and Hua, H. (2017). "L-Moment-Based regional frequency analysis of annual extreme precipitation and its uncertainty analysis." Water Resources Management, Vol. 31, pp. 3899-3919. 

  49. Lilienthal, J., Fried, R., and Schumann, A. (2018). "Homogeneity testing for skewed and cross-correlated data in regional flood frequency analysis." Journal of Hydrology, Vol. 556, pp. 557-571. 

  50. Lopez, J., and Frances, F. (2013). "Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates." Hydrology and Earth System Sciences, Vol. 17, pp. 3189-3203. 

  51. Lu, L. H. (1991). Statistical methods for regional flood frequency investigations. Ph.D. thesis, Cornell University, Ithaca, N.Y. 

  52. Markiewicz, I., Strupczewski, W. G., Kochanek, K., and Singh, V. P. (2006). "Discussion on 'Non-stationary pooled flood frequency analysis." by J.M. Cunderlik and D.H. Burn [J.Hydrol. 276 (2003) 210-223]." Journal of Hydrology, Vol. 330, pp. 382-385. 

  53. McCollum, J., and Beighley, E. (2019). "Flood frequency hydrology with limited data for the weser river basin, germany." Journal of Hydrologic Engineering, Vol. 24, No. 3, p. 05019002. 

  54. Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J. (2008). "Statinarity is dead: whither water management?" Science, Vol. 319, pp. 573-574. 

  55. Mondal, A., and Daniel, D. (2019). "Return levels under nonstationarity: the need to update infrastructure design strategies." Journal of Hydrologic Engineering, Vol. 24, No. 1, p. 04018060. 

  56. Mortuza, M. R., Moges, E., Demissie, Y., and Li, H. Y. (2019). "Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis." Theoretical and Applied Climatology, Vol. 135, No. 3-4, pp. 855-871. 

  57. Nam, W., Shin, H., Jung, Y., Joo, K., and Heo, J. H. (2015a). "Delineation of the climatic rainfall regions of South Korea based on a multivariate analysis and regional rainfall fequency analyses." International Journal of Climatology, Vol. 35, No. 5, pp. 777-793. 

  58. Nam, W., Kim, S., Kim, H., Joo, K., and Heo, J. H. (2015b). "The evaluation of regional frequency analyses methods for nonstationary data." International Association of Hydrological Sciences, Vol. 371, pp. 95-98. 

  59. Nandakumar, N. (1995). Estimation of extreme rainfalls for Victoia : application of the Forge method, Working document 95/7. Cooperative Research Centre for Catchment Hydrology, Monash University, Clayton, Victoria, Australia. 

  60. Natural Environment Research Council (NERC) (1975). Flood studies report. Natural Environment Research Council, Cambridge, U.K. 

  61. O'Brien, N. L., and Burn, D. H. (2014). "A nonstationary index-flood technique for estimating extreme quantiles for annual maximum streamflow." Journal of Hydrology, Vol. 519, pp. 2040-2048. 

  62. Ouali, D., Chebana, F., and Ouarda, T. B. M. J. (2017). "Fully nonlinear statistical and machine-learning approaches for hydrological frequency estimation at ungauged sites." Journal of Advances in Modeling Earth Systems, Vol. 9, No. 2, pp. 1292-1306. 

  63. Ouarda, T. B. M. J., and Charron, C. (2019). "Changes in the distribution of hydro-climatic extremes in a non-stationary framework." Scientific Reports, Vol. 9, No. 1, pp. 8104-8112. 

  64. Read, L. K., and Vogel, R. M. (2015). "Reliability, return periods, and risk under nonstationarity." Water Resources Research, Vol. 51, No. 8, pp. 6381-6398. 

  65. Requena, A. I., Chebana, F., and Ouarda, T. B. M. J. (2017). "Heterogeneity measures in hydrological frequency analysis: review and new developments." Hydrology and Earth System Sciences, Vol. 21, pp. 1651-1668. 

  66. Roth, M., Buishand, T. A., Jongbloed, G., Klein Tank, A. M. G., and van Zanten, J. H. (2012). "A regional peaks-over-threshold model in a nonstationary climate." Water Resources Research, Vol. 48, p .W11533. 

  67. Salas, J. D., and Obeysekera, M. (2014). "Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events." Journal of Hydrologic Engineering, Vol. 19, No. 3, pp. 554-568. 

  68. Schaefer, M. G. (1990). "Regional analyses of precipitation annual maxima in washington state." Water Resources Research, Vol. 26, No. 1, pp. 119-131. 

  69. Sen, P. K. (1968). "Estimates of the regression coefficient based on Kendall's tau." Journal of the American Statistical Association, Vol. 63, No. 324, pp. 1379-1389. 

  70. Shin, J. Y., Jeong, C., Joo, K., and Heo, J. H. (2018). "Hydrological homogeneous region delineation for bivariate frequency analysis of extreme rainfalls in Korea." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 1, pp. 49-60. 

  71. Silva, T., Naghettini, M., and Portela, M. M. (2016). "On some aspects of peaks-over-threshold modeling of floods under nonstationarity using climate covariates." Stochastic Environmental Research and Risk Assessment, Vol. 30, pp. 207-224. 

  72. Simkova, T. (2017). "Homogeneity testing for spatially correlated data in multivariate regional frequency analysis." Water Resources Research, Vol. 53, pp. 7012-7028. 

  73. Sung, J. H., Kim, Y. O., and Jeon, J. J. (2018). "Application of distribution-free nonstationary regional frequency analysis based on L-moments." Theoretical and Applied Climatology, Vol. 133, pp. 1219-1233. 

  74. Svensson, C., and Jones, D. A. (2010). "Review of rainfall frequency estimation methods." Journal of Flood Risk Management, Vol. 3, pp. 296-313. 

  75. Thorarinsdottir, T. L., Hellton, K. H., Steinbakk, G. H., Schlichting, L., and Engeland, K. (2018). "Bayesian regional flood frequency analysis for large catchments." Water Resources Research, Vol. 54, No. 9, pp. 6929-6947. 

  76. Wang, Z., Zeng, Z., Lai, C., Lin, W., Wu, X., and Chen, X. (2017). "A regional frequency analysis of precipitation extremes in Mainland China with fuzzy c-means and L-moments approaches." International Journal of Climatology, Vol. 37, No. S1, pp. 429-444. 

  77. Yin, Y., Chen, H., Xu, C. Y., Xu, W., Chen, C., and Sun, S. (2016). "Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China." Theoretical and Applied Climatology, Vol. 124, No. 3-4, pp. 1005-1022. 

  78. Zaifoglu, H., Akintug, B., and Yanmaz, A. M. (2018). "Regional frequency analysis of precipitation using time series clustering approaches." Journal of Hydrologic Engineering, Vol. 23, No. 6, p. 05018007. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로