$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 지상라이다를 활용한 소나무 산불피해지의 임목 피해특성 분석
Characteristics Analysis of Burned tree by Terrestrial LiDAR in Forest Fired Area of Pinus densiflora 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.36 no.6 pt.1, 2020년, pp.1291 - 1302  

강진택 (국립산림과학원 산림산업연구과) ,  고치웅 (국립산림과학원 산림산업연구과) ,  임종수 (국립산림과학원 산림산업연구과) ,  이선정 (국립산림과학원 산림산업연구과) ,  문가현 (국립산림과학원 산림산업연구과) ,  이승현 (국립산림과학원 산림산업연구과)

초록
AI-Helper 아이콘AI-Helper

지상라이다의 활용성 검증을 위하여 지상라이다를 이용하여 산불피해지의 임목 피해특성 조사 결과를 전문가에 의해 조사한 결과와 비교하였다. 조사구는 산록에서 산정으로 30 m×50 m(0.15 ha) 규모로 4 plots를 설정하였으며, 조사구내 피해임목의 흉고직경, 수고, 지하고, 지하고, 연소높이 및 수관길이를 조사하였다. 동시에 지상 레이저 스캐너를 이용하여 조사구내 피해임목의 피해특성 정보를 조사하여 전문가 조사결과와 비교분석 하였다. 전문가 조사와 라이다 조사의 비교 결과, 흉고직경은 30.8 cm, 29.7 cm, 수고 15.8 m, 17.5 m, 지하고 8.4 m, 8.4 m, 연소높이 4.0 m, 3.5 m, 수관길이 7.4 cm, 9.1 cm로 나타났다. 두 조사 방법 간에는 수고와 수관길이를 제외한 나머지 조사항목에서는 유의적인 차이를 보이지 않았다. 또한 개체목의 안정성과 고사율에 영향을 미치는 H/D율과 CL/H율, BH/CL율을 분석한 결과, 전문가 조사 51.3%, 47.1%, 53.6%, 라이다 조사 58.8%, 52.0%, 38.7%로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

To verify the field-effectiveness of Terrestrial Laser Scanner (TLS), a terrestrial LiDAR was deployed to examine the damage properties of woods in forest fire area, then the data was compared with the results surveyed by a forestry expert. Four sample plots (30 m × 50 m, 0.15 ha) were set from...

Keyword

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구의 목적은 산불 피해지를 대상으로 지상라이다를 활용하여 개체목 수준의 정보를 취득하여 산불 피해지의 특성을 분석하고 전문가에 의한 조사와 비교 검증하여, 향후 산불 피해지의 피해량 조사 및 산불 피해 특성조사에 활용하기 위해 추진하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (44)

  1. Agee, J.K. and M.R. Lolley, 2006. Thinning and prescribed fire effects on fuels and potential fire behavior in an Eastern cascades forest, Washington, USA, Fire Ecology, 2(2): 3-19. 

  2. Aijazi, A.K., P. Checchin, L. Malaterre, and L. Trassoudiane, 2017. Automatic detection and parameter estimation of trees for forest inventory applications using 3D terrestrial LiDAR, Journal of Remote Sensing, 9(946): 1-24. 

  3. Chang, A.J. and H.T. Kim, 2008. Study of biomass estimation in forest by aerial photograph and LiDAR data, Journal of the Korean Association of Geographic Information Studies, 11(3): 166173 (in Korean with English abstract). 

  4. Cho, S.W., Y.K. Kim, and J.W. Park, 2017. Development of forest volume estimation model using airborne LiDAR data; - A case study of mixed forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun. Journal of the Korean Association Geographic Information Studies, 20(3):181-194 (in Korean with English abstract). 

  5. Chung, J.S., B.D. Lee, and H.H. Kim, 2002. Estimation of Pinus densiflora stand damage grades for Samchuck forest fire area using GIS and discriminant analysis, Journal of Korean Forest Society, 91: 355-361 (in Korean with English abstract). 

  6. Collins, B.M., M. Kelly, J.W. Van Wangtendonk, and S.L. Stephens, 2007. Spatial patterns of large natural fires in Sierra Nevada wilderness areas, Landscape Ecology, 22(4): 545-557. 

  7. Feret, J.B. and G.P. Asner, 2012. Semi-supervised methods to identify individual crowns of lowland tropical canopy species using imaging spectroscopy and LiDAR, Journal of Remote Sensing, 4: 2457-2476. 

  8. Graham, R.T., A.E. Harvey, T.B. Jain, and J.R. Tonn, 1999. The effects of thinning and similar stand treatments on fire behavior in Western forests, USDA (U.S. Department of Agriculture, Forest Service), Rocky Mountain Research Station, Portland, Oregon, USA, p. 27. 

  9. Harada, K. and Y. Kawata, 2005. Discussion on the utilization of coastal forests for the tsunami reduction effects, Annual Journal of Coastal Engineering, Japan Society of Civil Engineers, 52: 276-280. 

  10. Harrod, R.J., D.W. Peterson, N.A. Povak, and E.K. Dodson, 2009. Thinning and prescribed fire effects on overstory tree and snag structure in dry coniferous forests of the interior pacific northwest, Forest Ecology and Management, 258(5): 712-721. 

  11. Holmgren, J., 2004. Prediction for tree height, basal area and stem volume in forest stands using airborne laser scanning, Scandinavian Journal for Forest Research, 19(6): 543-553. 

  12. Hyyppa, J., H. Hyyppa, P. Litkey, X. Yu, H. Haggren, P. Ronnholm, U. Pyysalo, J. Pitkanen, and M. Maltamo, 2004. algorithms and methods of airborne laser scanning for forest measurements. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 36(8): 82-89. 

  13. Key, C.H. and N.C. Benson, 2006. Landscape assessment: Sampling and analysis methods, USDA (U.S. Department of Agriculture, Forest Service), Rocky Mountain Research Station, Portland, Ogden, USA. 

  14. Kim, H.H., B.D. Lee, and J.S. Chung, 2002. Estimating fire-damage grades of Pinus densiflora forest stands by interpreting Landsat 7 ETM+ imagery using neural network, Journal of Korean Forest Society, 91(6): 706-713 (in Korean with English abstract). 

  15. Kim, S.W., K.W. Chun, K.H. Park, Y.H. Lim, J.U. Yun, S.M. Kwon, H.J. Youn, J.H. Lee, Y. Teramoto, and T. Ezaki, 2015. The Necessity and Method of Stand Density Control Considering the Shape Ratio of Pinus thunbergii Coastal Disaster Prevention Forests in South Korea, Journal of Korean Forest Society, 106(4): 457-464 (in Korean with English abstract). 

  16. Kim, S.Y., 2015. A Study on the analysis of fuel characteristics for forest fire hazard assessment. Yesan. Doctoral dissertation, Kongju National University, Yesan, Republic of Korea, 2015: 138 (in Korean with English abstract). 

  17. Korea Forestry Promotion Institute, 2017. Assessment of Korea's Forest resources at 2011-2015, Korea Forestry Promotion Institute, Seoul, KOR. 

  18. Koutsias, N., M. Karteris, and E. Chuviece, 2000. The use of intensity-hue-saturation transformation of Landsat-5 thematic mapper data for burned land mapping, Photogrammetric Engineering & Remote Sensing, 66(67): 829-839. 

  19. Kunisaki, T., 2005. Pattern of snow accretion damage in an old Sugi (Cryptomeria japonica D. Don) Plantation at the base of Mt. Iwate, Northern Japan, Journal of the Japanese Forest Society, 87: 426-429. 

  20. Kushla, J.D. and W.J. Ripple, 1998. Assessing wildfire effects with Landsat thematic mapper data, Remote Sensing of Environment, 19: 2493-2507. 

  21. Lee, B.D. and J.S. Chung, 2006. Estimation of time series model on forest fire occurrences and burned area from 1970 to 2005, Journal of Korean Forest Society, 95(6): 634-648 (in Korean with English abstract). 

  22. Lee, J.H., X. Cai, J. Lellmann, and M. Dalponte, 2016. Individual tree species classification from airborne multisensory imagery using robust PCA, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6): 2554-2567 

  23. Lee, S.J., Y.S. Choi, and H.S. Yoon, 2012. Estimation of carbon dioxide stocks in forest using airborne LiDAR data, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 30(3): 259-268 (in Korean with English abstract). 

  24. Lee, S.J., S.Y. Kim, B.D. Lee, and Y.J. Lee, 2018. Estimation of canopy fuel characteristics for Pinus densiflora stands using diameter distribution models: Forest managed stands and unmanaged stands, Journal of Korean Society of Forest Science, 107(4): 412-421 (in Korean with English abstract). 

  25. Lee, S.Y., M.W. Lee, C.H. Yeom, and G.G. Kwon, 2008. Comparative analysis of forest fire danger rating on the forest characteristics of thinning area and non-thinning area on forest fire burnt area, Journal of the Korean Society of Hazard Mitigation, 153-156 (in Korean with English abstract). 

  26. Lim, K.S. and P.M. Treitz, 2004. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators, Scandinavian Journal for Forest Research, 19(6): 558-570. 

  27. Lutes, D.C., R.E. Keane, J.F. Caratti, C.H. Key, N.C. Benson, S. Sutherland, and L.J. Gangi, 2006. FIREMON: The fire effects monitoring and inventory system 1CD, USDA (U.S. Department of Agriculture Forest Service), Rocky Mountain Research Station, Portland, Oregon, USA. 

  28. Mitchell, S.J., 2000. Stem growth responses in Douglas fir and Sitka spruce following thinning: implications for assessing windfirmness, Forest Ecology Management, 135: 105-114. 

  29. Mutch, R.W., S.F. Amo, J.K. Brown, C.E. Karlson, R.D. Ottmar, and J.L., Perterson, 1993. Forest health in the Blue Mountains: A management strategy for fire-adapted ecosystems, USDA (U.S. Department of Agriculture Forest Service), Portland, Oregon, USA, p. 20. 

  30. Palace, M., F.B. Sullivan, M. Ducey, and C. Herrick, 2016. Estimating Tropical Forest Structure Using a Terrestrial Lidar, PLoS One, 11(4): 1-19. 

  31. Patterson, M. W. and S. R. Yool, 1998. Mapping fireinduced vegetation mortality using Landsat thematic mapper data: A comparison of linear transformation techniques, Remote Sensing of Environment, 65: 132-142. 

  32. Philip, M.S., 1994. Measuring trees and forests, 2nd edition, CABI International, Wallingford, USA, p. 11. 

  33. Pommerening, A., and P. Grabarnik, 2019. Individual based Methods Forest Ecology and Management, Springer, Switzerland, p. 411. 

  34. Pretzsch, H., 1996. Erfassung des Pflegezustandes von Waldbestanden bei der zweiten Bundeswaldinventur [Assessment of tending requirements in forest stands as part of the 2nd German National Inventory], AFZ/DerWald, 15: 820-823. 

  35. Rothermel, R.C., 1991. Predicting behavior and size of crown fires in the northern Rocky Mountains, Research. Paper. INT-RP-438, Intermountain Forest and Range Experiment Station, Ogden, USA, p. 46. 

  36. Sando, R.W. and C.H. Wick, 1972. A method of evaluating crown fuels in forest stands, Research paper NC84. U.S. Department of Agriculture, Forest Service, Washinton D.C, USA. 

  37. Schultz, M., 2001. Pepper Hill - a Tragedy, Wildland Firefighter, 4(10): 25-29. 

  38. Sheridan, R.D., S.C. Popescu, D. Gatziolis, C.L. Morgan, and N. Ku, 2015. Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR Metrics and Forest Inventory and Analysis Data in the Pacific Northwest, Remote Sensing, 7(1): 229-255. 

  39. Sunar, F. and C. Ozkan, 2001. Forest fire analysis with remote sensing data, International Journal of Remote Sensing, 22(2): 2265-2277. 

  40. Turner, M.G. and W.H. Romme, 1994. Landscape dynamics in crown fire ecosystems, Landscape Ecology, 9: 57-77. 

  41. Van Laar, A. and A. Akca, 2007. Forest Mensuration. Managing forest ecosystem, Springer, Dordrecht, Netherlands. 

  42. Wimberly, M.C. and M.J. Reilly, 2007. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery, Remote Sensing of Environment, 108: 189-197. 

  43. Woo, C.S., J.S. Yoon, J.I. Shin, and K.S. Lee, 2007. Automatic extraction of individual tree height in mountainous forest using airborne Lidar data, Journal of Korean Forest Society, 96(3): 251-258 (in Korean with English abstract). 

  44. Zhang, C., K. Xia, H. Feng, Y. Yang, and X. Du, 2020. Tree species classification using deep learning and RGB optical images obtained by and unmanned aerial vehicle, Journal of Forest Research, 1: 10. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로