최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국지리정보학회지 = Journal of the Korean Association of Geographic Information Studies, v.23 no.4, 2020년, pp.16 - 41
이채연 (한국외국어대학교 대기환경연구센터) , 안승만 (국토연구원)
Geospatial input setting to represent the reality of spatial distribution or quantitative property within model has become a major interest in earth system simulation. Many studies showed the variation of grid resolution could lead to drastic changes of spatial model results because of insufficient ...
Agam, G., Tang, X. 2005. A sampling framework for accurate curvature estimation in discrete surfaces. Visualization and Computer Graphics, IEEE Transactions on 11(5):573-583.
An, S.M., Kim, B.S., Lee, H.Y., Kim, C.H., Yi, C.Y., Eum, J.H., Woo, J.H. 2014. Threedimensional point cloud based sky view factor analysis in complex urban settings. Int. J. Climatol. 34:2685-2701.
An, S.M., Lee, H.Y., Kim, B., Yi, C.Y., Eum, J.H., Woo, J.H. 2014. Geospatial spreadsheets with microscale air quality visualization and synchronization for supporting multiple-scenario visual collaboration. International Journal of Geographical Information Science, (ahead-of-print), 1-22. doi: 10.1080/13658816.2014.938077.
Atkinson, P. M., and Tate, N. J. 2000. Spatial scale problems and geostatistical solutions: a review. Professional Geographer 52, 607-623.
Alterovitz, R., Simeon, T., Goldberg, K. Y. 2007. The Stochastic Motion Roadmap: A Sampling Framework for Planning with Markov Motion Uncertainty. In Robotics: Science and Systems (pp.246-253).
Carlberg M, Gao P, Chen G, Zakhor A. 2009. Classifying urban landscape in aerial lidar using 3d shape analysis. In 16th International Conference on Image Processing, IEEE; 1701-1704.
Carneiro C, Morello E, Desthieux G. 2009. Assessment of Solar Irradiance on the Urban Fabric for the Production of Renewable Energy using LIDAR Data and Image Processing Techniques. In Advances in GIScience, Springer Berlin Heidelberg; 83-112.
Charaniya AP, Manduchi R, Lodha SK. 2004. Supervised Parametric Classification of Aerial LiDAR Data, In Conference on Computer Vision and Pattern Recognition Workshop, IEEE; 30.
Chen G, Zakhor A. 2009. 2D tree detection in large urban landscapes using aerial LiDAR data, In 16th International conference on Image Processing, IEEE; 1693-1696.
Costanza, R. 1989. Model goodness of fit: a multiple resolution procedure. Ecological modelling 47(3):199-215.
Davies, A. M., Kwong, S., Flather, R. A. 2000. On determining the role of wind wave turbulence and grid resolution upon computed storm driven currents. Continental Shelf Research 20(14):1825-1888.
Eum, J.H., Scherer, D., Fehrenbach, U., Woo, J.H. 2011. Development of an urban landcover classification scheme suitable for representing climatic conditions in a densely built-up Asian megacity. Landscape and Urban Planning, 103(3):362-371.
Farzinmoghadam, M., Mostafavi, N., Infield, E. H., &Hoque, S. 2019. Developing an automated method for the application of lidar in iumat land-use model: Analysis of land-use changes using building-form parameterization, GIS, and artificial neural networks. Journal of Green Building, 14(1):1-30.
Fenner-Crisp, P., Barry, T., Bennett, D., Chang, S., Callahan, M., Burke, A., Knott, S. M. 1997. Guiding principles for Monte Carlo analysis. Risk Assessment Forum, US Environmental Protection Agency, 11-16.
Florinsky, I., Kuryakova, G. 2000. Determination of grid size for digital terrain modelling in landscape investigations-exemplified by soil moisture distribution at a microscale. International Journal of Geographical Information Science 14(8):815-832.
Goodchild, M. 2001. Metrics of scale in remote sensing and GIS. International Journal of Applied Earth Observation and Geoinformation 3(2):114-120.
Gousseau, P., Blocken, B., Stathopoulos, T., Van Heijst, G. J. F. 2011. CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmospheric Environment 45(2):428-438.
Goodin, D. G., Henebry, G. M. 2002. The effect of rescaling on fine spatial resolution NDVI data: A test using multi-resolution aircraft sensor data. International Journal of Remote Sensing 23(18):3865-3871.
Green, R. H. 1966. Measurement of non-randomness in spatial distributions. Researches on Population Ecology 8(1): 1-7.
Hefny, M. M., Ooka, R. 2009. CFD analysis of pollutant dispersion around buildings: effect of cell geometry. Building and Environment 44(8):1699-1706.
Hengl, T. 2006. Finding the right pixel size. Computers & Geosciences 32(9): 1283-1298.
Hou, Q., Ai, C. 2020. A network-level sidewalk inventory method using mobile LiDAR and deep learning. Transportation research part C: emerging technologies, 119, 102772.
Hu J, You S, Neumann U. 2003. Approaches to large-scale urban modeling, In Computer Graphics and Applications, IEEE; 62-69.
Jochem, A., Hofle, B., Rutzinger, M., Pfeifer, N. 2009. Automatic roof plane detection and analysis in airborne lidar point clouds for solar potential assessment. Sensors 9(7):5241-5262.
Jovanovic, Dusan, Stevan Milovanov, Igor Ruskovski, Miro Govedarica, Dubravka Sladic, Aleksandra Radulovic, and Vladimir Pajic. 2020. Building Virtual 3D City Model for Smart Cities Applications: A Case Study on Campus Area of the University of Novi Sad. ISPRS International Journal of Geo-Information 9, 8:476.
Kienzle, S. 2004. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Transactions in GIS 8(1):83-112.
Kim, J.-J., Baik, J.-J. 2010. Effects of street-bottom and building-roof heating on flow in three-dimensional street canyons. Advances in Atmospheric Science 27(3): 513-527. doi:10.1007/s00376-009-9095-2.
Kokalj Z, Zaksek K, Ostir K. 2011. Application of sky-view factor for the visualization of historic landscape features in lidar-derived relief models, Antiquity 85:263-273.
Lalonde JF, Vandapel N, Huber FF, Hebert M. 2006. Natural Terrain Classification Using Three-Dimensional Ladar Data, Journal of Field Robotics 23:839-861.
Letzel, M. O., Krane, M., Raasch, S. 2008. High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmospheric Environment 42(38): 8770-8784.
Lillesand, T., Kiefer, R. 2000. Remote Sensing and Image Interpretation, fourth ed. Wiley, New York, NY, 715p.
Lindberg F, Grimmond CSB. 2011. The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theoretical and applied climatology 105:311-323.
McQueen, J., Draxler, R., Rolph, G. 1995. Influence of grid size and terrain resolution on wind field predictions from an operational mesoscale model. Journal of Applied Meteorology 34(10):2166-2181.
Noda, A., Niino, H. 2003. Critical grid size for simulating convective storms: a case study of the Del city supercell storm. Geophysical Research Letters 30(16):1-4.
Phillips, J. D. 1988. The role of spatial scale in geomorphic systems. Geographical Analysis, 20(4):308-317.
Scherer, D., Fehrenbach, U., Beha, H. D., Parlow, E. 1999. Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment 33(24):4185-4193.
Shirowzhan, S., Lim, S., Trinder, J., Li, H., Sepasgozar, S. M. 2020b. Data mining for recognition of spatial distribution patterns of building heights using airborne lidar data. Advanced Engineering Informatics, 43:101033.
Shirowzhan, S., Tan, W., Sepasgozar, S. M. 2020a. Digital Twin and CyberGIS for Improving Connectivity and Measuring the Impact of Infrastructure Construction Planning in Smart Cities. 240.
Tan, B., Woodcock, C. E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Myneni, R. B. 2006. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sensing of Environment 105(2):98-114.
Tarnavsky, E., Garrigues, S., Brown, M. E. 2008. Multiscale geostatistical analysis of AVHRR, SPOT-VGT, and MODIS global NDVI products. Remote Sensing of Environment 112(2):535-549.
Torno, S., Torano, J., Menendez, M., Gent, M., Allende, C. 2011. Prediction of particulate air pollution from a landfill site using CFD and LIDAR techniques. Environmental fluid mechanics 11(1):99-112.
Turner, M. G., O'Neill, R. V., Gardner, R. H., Milne, B. T. 1989. Effects of changing spatial scale on the analysis of landscape pattern. Landscape ecology 3(3-4):153-162.
Unger J. 2009. Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. International Journal of Environment and Pollution 36:59-80.
Vega C, Durrieu S. 2011. Multi-level filtering segmentation to measure individual tree parameters based on Lidar data: Application to a mountainous forest with heterogeneous stands, International Journal of Applied Earth Observation and Geoinformation 13:646-656.
Weisman, M. L., Skamarock, W. C., Klemp, J. B. 1997. The resolution dependence of explicitly modeled convective systems. Monthly Weather Review 125(4):527-548.
Xue, F., Lu, W., Chen, Z., Webster, C. J. 2020. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principles. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 418-431.
Zheng, J., Zhang, L., Che, W., Zheng, Z., Yin, S. 2009. A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmospheric Environment 43(32):5112-5122.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.