최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국수소 및 신에너지학회 논문집 = Transactions of the Korean Hydrogen and New Energy Society, v.31 no.6, 2020년, pp.637 - 645
김경훈 (금오공과대학교 기계공학과) , 정영관 (금오공과대학교 기계공학과)
In this paper, entransy analysis is carried out for combined heat and power (CHP) generation system driven by low-grade heat source compared with energy and exergy analyses. The system consists of a regenerative organic rankine cycle (ORC) and an additional process heater in a series circuit. Specia...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
A. Schuster, S. Karellas, E. Kakaras, and H. Spliethoff, "Energetic and economic investigation of organic Rankine cycle applications", Appl. Therm. Eng., Vol. 29, No. 8-9, 2009, pp. 1809-1817, doi: https://doi.org/10.1016/j.applthermaleng.2008.08.016.
T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, and K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources", Energy, Vol. 35, No. 3, 2010, pp. 1403-1411, doi: https://doi.org/10.1016/j.energy.2009.11.025.
M. Aguirre and G. Ibikunle, "Determinants of renewable energy growth: a global sample analysis", Energy Policy, Vol. 69, 2014, pp. 374-384, doi: https://doi.org/10.1016/j.enpol.2014.02.036.
K. H. Kim and H. Perez-Blanco, "Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration", Appl. Therm. Eng., Vol. 91, 2015, pp. 964-974, doi: https://doi.org/10.1016/j.applthermaleng.2015.04.062.
K. H. Kim and K. C. Kim, "Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy", Appl. Therm. Eng., Vol. 70, No. 1, 2014, pp. 50-60, doi: https://doi.org/10.1016/j.applthermaleng.2014.04.064.
G. Qiu, "Selection of working fluids for micro-CHP systems with ORC", Renewable Energy, Vol. 48, 2012, pp. 565-570, doi: https://doi.org/10.1016/j.renene.2012.06.006.
J. S. Pereira, J. B. Ribeiro, R. Mendes, G. C. Vaz, and J. C. Andre, "ORC based micro-cogeneration systems for residential application - a state of the art review and current challenges", Renew. Sustain. Energy Rev., Vol. 92, 2018, pp. 728-743, doi: https://doi.org/10.1016/j.rser.2018.04.039.
M. Santos, J. Andre, E. Costa, R. Mendes, and J. Ribeiro, "Design strategy for component and working fluid selection in a domestic micro-CHP ORC boiler", Appl. Therm. Eng. Vol. 169, 2020, pp. 114945, doi: https://doi.org/10.1016/j.applthermaleng.2020.114945.
U. Dresher and D. Brueggemann, "Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants", App. Therm. Eng,, Vol. 27, No. 1, 2007, pp. 223-228, doi: https://doi.org/10.1016/j.applthermaleng.2006.04.024.
J. Wang, Y. Dai, and L. Gao, "Exergy analysis and parametric optimization for different cogeneration power plants in cement industry", App. Energy, Vol. 86, 2009, pp. 941-948, doi: https://doi.org/10.1016/j.apenergy.2008.09.001.
F. Heberle and D. Brueggemann, "Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation", Appl. Therm. Eng., Vol. 30, No. 11-12, 2010, pp. 1326-1332, doi: https://doi.org/10.1016/j.applthermaleng.2010.02.012.
J. S. Pereira, J. B. Ribeiro, R. Mendes, and J. C. Andre, "Analysis of a hybrid (topping/bottoming) ORC based CH P configuration integrating a new evaporator design concept for residential applications", Appl. Therm. Eng., Vol. 160, 2019, pp. 113984, doi: https://doi.org/10.1016/j.applthermaleng.2019.113984.
A. Arabkoohsara and H. Nami, "Thermodynamic and economic analyses of a hybrid waste-driven CHP-ORC plant with exhaust heat recovery", Energy Convers. Mgmt., Vol. 187, 2019, pp. 512-522, doi: https://doi.org/10.1016/j.enconman.2019.03.027.
J. Sachdeva and O. Singh, "Comparative evaluation of solarized triple combined cycle for different ORC fluids", Renewable Energy, Vol. 163, 2021, pp. 1333-1342, doi: https://doi.org/10.1016/j.renene.2020.09.063.
Z. Y. Guo, H. Y. Zhu, and X. G. Liang, "Entransy-a physical quantity describing heat transfer ability", Int. J. Heat Mass Transfer, Vol. 50, No. 13-14, 2007, pp. 2545-2556, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.034.
X. T. Cheng, X. G. Liang, and Z. Y. Guo, "Entransy decrease principle of heat transfer in an isolated system", Chin. Sci. Bull., Vol. 56, 2011, pp. 847-854, doi: https://doi.org/10.1007/s11434-010-4328-4.
X. T. Cheng and X. G. Liang, "From thermomass to entransy", Int. J. Heat Mass Transfer, Vol. 62, 2013, pp. 174-177, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.063.
Z. Q. Yu, P. Wang, W. J. Zhou, Z. Y. Li, and W. Q. Tao, "Study on the consistency between field synergy principle and entransy dissipation extremum principle", Int. J. Heat Mass Transfer, Vol. 116, 2018, pp. 621-634, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.044.
L. Zhang, H. Y. Wei, and X. S. Zhang, "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory", Energy, Vol. 141, 2017, pp. 661-672, doi: https://doi.org/10.1016/j.energy.2017.09.118.
M. Xu, "The thermodynamic basis of entransy and entransy dissipation", Energy, Vol. 36, No. 7, 2011, pp. 4272-4277, doi: https://doi.org/10.1016/j.energy.2011.04.016.
X. T. Cheng and X. G. Liang, "Analyses of entropy generation and heat entransy loss in heat transfer and heat-work conversion", Int. J. Heat Mass Transfer, Vol. 64, 2013, pp. 903-909, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.025.
K. H. Kim and K. Kim, "Comparative analyses of energy-exergy-entransy for the optimization of heat-work conversion in power generation systems", Int. J. Heat Mass Transfer, Vol. 84, 2015, pp. 80?90, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.002.
C. H. Han and K. H. Kim, "Entransy and exergy analyses for optimizations of heat-work conversion with carnot cycle", J. Ther. Sci., Vol. 25, 2016, pp. 242-249, doi: https://doi.org/10.1007/s11630-016-0856-9.
S. Wang, W. Zhang, Y. Q. Feng, X. Wang, Q. Wang, Y. Z. Liu, Y. Wang, and L. Yao, "Entropy, entransy and exergy analysis of a dual-loop organic rankine cycle (DORC) using mixture working fluids for engine waste heat recovery", Energies, Vol. 13, No. 6, 2020, pp, 1301, doi: https://doi.org/10.3390/en13061301.
T. Yang, G. J. Chen, and T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J., Vol. 67, No. 1, 1997, pp. 27-36, doi: https://doi.org/10.1016/S1385-8947(97)00012-0.
J. Gao, L. D. Li, Z. Y. Zhu, and S. G. Ru, "Vapor-liquid equilibria calculation for asymmetric systems using Patel-Teja equation of state with a new mixing rule", Fluid Phase Equilibria, Vol. 224, No. 2, 2004, pp. 213-219, doi: https://doi.org/10.1016/j.fluid.2004.05.007.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.