$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Substrate specificity of bacterial endoribonuclease toxins 원문보기

BMB reports, v.53 no.12, 2020년, pp.611 - 621  

Han, Yoontak (Department of Life Sciences, Korea University) ,  Lee, Eun-Jin (Department of Life Sciences, Korea University)

Abstract AI-Helper 아이콘AI-Helper

Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs du...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The endoribonuclease toxins recognize and cleave defined mRNA sequences depending on its structures and residues at the active sites (20). In this review, we summarize the current understanding of bacterial endoribonuclease toxins focusing on the substrate specificity of the toxins and underlying mechanisms.

가설 설정

  • Six key residues are also indicated in pink. (H) AbiQ monomer of Lactococcus lactis (PDB ID: 4GLK). Seven key residues are indicated in pale violet.
본문요약 정보가 도움이 되었나요?

참고문헌 (92)

  1. 1 Nierlich DP 1978 Regulation of bacterial growth, RNA, and protein synthesis Annu Rev Microbiol 32 393 432 10.1146/annurev.mi.32.100178.002141 360971 

  2. 2 Harms A Brodersen DE Mitarai N Gerdes K 2018 Toxins, Targets, and Triggers: An overview of toxin-antitoxin biology Mol Cell 70 768 784 10.1016/j.molcel.2018.01.003 29398446 

  3. 3 Page R Peti W 2016 Toxin-antitoxin systems in bac-terial growth arrest and persistence Nat Chem Biol 12 208 214 10.1038/nchembio.2044 26991085 

  4. 4 Zhang Y Zhang J Hoeflich KP Ikura M Qing G Inouye M 2003 MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli Mol Cell 12 913 923 10.1016/S1097-2765(03)00402-7 14580342 

  5. 5 Pedersen K Zavialov AV Pavlov MY Elf J Gerdes K Ehrenberg M 2003 The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site Cell 112 131 140 10.1016/S0092-8674(02)01248-5 12526800 

  6. 6 Zhang Y Zhang J Hara H Kato I Inouye M 2005 Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase J Biol Chem 280 3143 3150 10.1074/jbc.M411811200 15537630 

  7. 7 Jorgensen MG Pandey DP Jaskolska M Gerdes K 2009 HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea J Bacteriol 191 1191 1199 10.1128/JB.01013-08 19060138 

  8. 8 Christensen-Dalsgaard M Jorgensen MG Gerdes K 2010 Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses Mol Microbiol 75 333 348 10.1111/j.1365-2958.2009.06969.x 19943910 

  9. 9 Winther KS Brodersen DE Brown AK Gerdes K 2013 VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA Nat Commun 4 2796 10.1038/ncomms3796 24225902 

  10. 10 Winther KS Gerdes K 2011 Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA Proc Natl Acad Sci U S A 108 7403 7407 10.1073/pnas.1019587108 21502523 

  11. 11 Germain E Castro-Roa D Zenkin N Gerdes K 2013 Molecular mechanism of bacterial persistence by HipA Mol Cell 52 248 254 10.1016/j.molcel.2013.08.045 24095282 

  12. 12 Castro-Roa D Garcia-Pino A De Gieter S van Nuland NAJ Loris R Zenkin N 2013 The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu Nat Chem Biol 9 811 817 10.1038/nchembio.1364 24141193 

  13. 13 Cruz JW Rothenbacher FP Maehigashi T Lane WS Dunham CM Woychik NA 2014 Doc toxin is a kinase that inactivates elongation factor Tu J Biol Chem 289 7788 7798 10.1074/jbc.M113.544429 24448800 

  14. 14 Cheverton AM Gollan B Przydacz M 2016 A Salmonella toxin promotes persister formation through acetylation of tRNA Mol Cell 63 86 96 10.1016/j.molcel.2016.05.002 27264868 

  15. 15 Wilcox B Osterman I Serebryakova M 2018 Escherichia coli ItaT is a type II toxin that inhibits translation by acetylating isoleucyl-tRNAIle Nucleic Acids Res 46 7873 7885 10.1093/nar/gky560 29931259 

  16. 16 Klumpp S Scott M Pedersen S Hwa T 2013 Molecular crowding limits translation and cell growth Proc Natl Acad Sci U S A 110 16754 16759 10.1073/pnas.1310377110 24082144 

  17. 17 Zhu M Dai X 2018 On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity Crit Rev Microbiol 44 455 464 10.1080/1040841X.2018.1425672 29334314 

  18. 18 Kamada K Hanaoka F Burley SK 2003 Crystal structure of the MazE/MazF complex: molecular bases of anti-dote-toxin recognition Mol Cell 11 875 884 10.1016/S1097-2765(03)00097-2 12718874 

  19. 19 Pandey DP Gerdes K 2005 Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes Nucleic Acids Res 33 966 976 10.1093/nar/gki201 15718296 

  20. 20 Zhang Y Inouye M 2009 The inhibitory mechanism of protein synthesis by YoeB, an Escherichia coli toxin J Biol Chem 284 6627 6638 10.1074/jbc.M808779200 19124462 

  21. 21 Christensen SK Mikkelsen M Pedersen K Gerdes K 2001 RelE, a global inhibitor of translation, is activated during nutritional stress Proc Natl Acad Sci U S A 98 14328 14333 10.1073/pnas.251327898 11717402 

  22. 22 Overgaard M Borch J Gerdes K 2009 RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB J Mol Biol 394 183 196 10.1016/j.jmb.2009.09.006 19747491 

  23. 23 Boggild A Sofos N Andersen KR 2012 The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity Structure 20 1641 1648 10.1016/j.str.2012.08.017 22981948 

  24. 24 Hwang JY Buskirk AR 2017 A ribosome profiling study of mRNA cleavage by the endonuclease RelE Nucleic Acids Res 45 327 336 10.1093/nar/gkw944 27924019 

  25. 25 Neubauer C Gao YG Andersen KR 2009 The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE Cell 139 1084 1095 10.1016/j.cell.2009.11.015 20005802 

  26. 26 Christensen SK Gerdes K 2003 RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA Mol Microbiol 48 1389 1400 10.1046/j.1365-2958.2003.03512.x 12787364 

  27. 27 Christensen SK Pedersen K Hansen FG Gerdes K 2003 Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA J Mol Biol 332 809 819 10.1016/S0022-2836(03)00922-7 12972253 

  28. 28 Condon C 2006 Shutdown decay of mRNA Mol Microbiol 61 573 583 10.1111/j.1365-2958.2006.05270.x 16803593 

  29. 29 Christensen SK Maenhaut-Michel G Mine N Gottesman S Gerdes K Van Melderen L 2004 Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli : involvement of the yefM-yoeB toxin-antitoxin system Mol Microbiol 51 1705 1717 10.1046/j.1365-2958.2003.03941.x 15009896 

  30. 30 Feng S Chen Y Kamada K 2013 YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity Nucleic Acids Res 41 9549 9556 10.1093/nar/gkt742 23945936 

  31. 31 Pavelich IJ Maehigashi T Hoffer ED Ruangprasert A Miles SJ Dunham CM 2019 Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability Nucleic Acids Res 47 10400 10413 10.1093/nar/gkz760 31501867 

  32. 32 Christensen-Dalsgaard M Gerdes K 2008 Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms Nucleic Acids Res 36 6472 6481 10.1093/nar/gkn667 18854355 

  33. 33 McKenzie GJ Magner DB Lee PL Rosenberg SM 2003 The dinB operon and spontaneous mutation in Escherichia coli J Bacteriol 185 3972 3977 10.1128/JB.185.13.3972-3977.2003 12813093 

  34. 34 Zhang Y Yamaguchi Y Inouye M 2009 Characterization of YafO, an Escherichia coli toxin J Biol Chem 284 25522 25531 10.1074/jbc.M109.036624 19617347 

  35. 35 Motiejunaite R Armalyte J Markuckas A Suziedeliene E 2007 Escherichia coli dinJ-yafQ genes act as a toxin-antitoxin module FEMS Microbiol Lett 268 112 119 10.1111/j.1574-6968.2006.00563.x 17263853 

  36. 36 Prysak MH Mozdzierz CJ Cook AM 2009 Bacterial toxin YafQ is an endoribonuclease that associates with the ribosome and blocks translation elongation through sequence-specific and frame-dependent mRNA cleavage Mol Microbiol 71 1071 1087 10.1111/j.1365-2958.2008.06572.x 19210620 

  37. 37 Maehigashi T Ruangprasert A Miles SJ Dunham CM 2015 Molecular basis of ribosome recognition and mRNA hydrolysis by the E. coli YafQ toxin Nucleic Acids Res 43 8002 8012 10.1093/nar/gkv791 26261214 

  38. 38 Kolodkin-Gal I Verdiger R Shlosberg-Fedida A Engelberg-Kulka H 2009 A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation PLoS One 4 e6785 10.1371/journal.pone.0006785 19707553 

  39. 39 Tian QB Ohnishi M Tabuchi A Terawaki Y 1996 A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1 Biochem Biophys Res Commun 220 280 284 10.1006/bbrc.1996.0396 8645296 

  40. 40 Hurley JM Woychik NA 2009 Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites J Biol Chem 284 18605 18613 10.1074/jbc.M109.008763 19423702 

  41. 41 Schureck MA Dunkle JA Maehigashi T Miles SJ Dunham CM 2015 Defining the mRNA recognition signature of a bacterial toxin protein Proc Natl Acad Sci U S A 112 13862 13867 10.1073/pnas.1512959112 26508639 

  42. 42 Schureck MA Repack A Miles SJ Marquez J Dunham CM 2016 Mechanism of endonuclease cleavage by the HigB toxin Nucleic Acids Res 44 7944 7953 10.1093/nar/gkw598 27378776 

  43. 43 Coles M Djuranovic S Soding J 2005 AbrB-like transcription factors assume a swapped hairpin fold that is evolutionarily related to double-psi beta barrels Structure 13 919 928 10.1016/j.str.2005.03.017 15939023 

  44. 44 Schmidt O Schuenemann VJ Hand NJ 2007 prlF and yhaV encode a new toxin-antitoxin system in Escherichia coli J Mol Biol 372 894 905 10.1016/j.jmb.2007.07.016 17706670 

  45. 45 Choi W Yamaguchi Y Lee JW 2017 Translation-dependent mRNA cleavage by YhaV in Escherichia coli FEBS Lett 591 1853 1861 10.1002/1873-3468.12705 28573789 

  46. 46 Snyder WB Silhavy TJ 1992 Enhanced export of beta-galactosidase fusion proteins in prlF mutants is Lon dependent J Bacteriol 174 5661 5668 10.1128/JB.174.17.5661-5668.1992 1512198 

  47. 47 Aizenman E Engelberg-Kulka H Glaser G 1996 An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death Proc Natl Acad Sci U S A 93 6059 6063 10.1073/pnas.93.12.6059 8650219 

  48. 48 Vesper O Amitai S Belitsky M 2011 Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli Cell 147 147 157 10.1016/j.cell.2011.07.047 21944167 

  49. 49 Culviner PH Laub MT 2018 Global analysis of the E. coli toxin mazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogene-sis Mol Cell 70 868 880 e810 10.1016/j.molcel.2018.04.026 29861158 

  50. 50 Park JH Yamaguchi Y Inouye M 2011 Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase FEBS Lett 585 2526 2532 10.1016/j.febslet.2011.07.008 21763692 

  51. 51 Miyamoto T Ota Y Yokota A Suyama T Tsuneda S Noda N 2017 Characterization of a Deinococcus radiodurans MazF: A UACA-specific RNA endoribonuclease Microbiologyopen 6 e00501 10.1002/mbo3.501 28675659 

  52. 52 Nariya H Inouye M 2008 MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development Cell 132 55 66 10.1016/j.cell.2007.11.044 18191220 

  53. 53 Tiwari P Arora G Singh M Kidwai S Narayan OP Singh R 2015 MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs Nat Commun 6 6059 10.1038/ncomms7059 25608501 

  54. 54 Hazan R Engelberg-Kulka H 2004 Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1 Mol Genet Genomics 272 227 234 10.1007/s00438-004-1048-y 15316771 

  55. 55 Tripathi A Dewan PC Siddique SA Varadarajan R 2014 MazF-induced growth inhibition and persister generation in Escherichia coli J Biol Chem 289 4191 4205 10.1074/jbc.M113.510511 24375411 

  56. 56 Masuda Y Miyakawa K Nishimura Y Ohtsubo E 1993 chpA and chpB , Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100 J Bacteriol 175 6850 6856 10.1128/JB.175.21.6850-6856.1993 8226627 

  57. 57 Zhang Y Zhu L Zhang J Inouye M 2005 Characterization of ChpBK, an mRNA interferase from Escherichia coli J Biol Chem 280 26080 26088 10.1074/jbc.M502050200 15901733 

  58. 58 Tsuchimoto S Nishimura Y Ohtsubo E 1992 The stable maintenance system pem of plasmid R100: degradation of PemI protein may allow PemK protein to inhibit cell growth J Bacteriol 174 4205 4211 10.1128/JB.174.13.4205-4211.1992 1624414 

  59. 59 Tsuchimoto S Ohtsubo H Ohtsubo E 1988 Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100 J Bacteriol 170 1461 1466 10.1128/JB.170.4.1461-1466.1988 2832364 

  60. 60 Zhang J Zhang Y Zhu L Suzuki M Inouye M 2004 Interference of mRNA function by sequence-specific endoribonuclease PemK J Biol Chem 279 20678 20684 10.1074/jbc.M314284200 15024022 

  61. 61 Kasari V Kurg K Margus T Tenson T Kaldalu N 2010 The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair J Bacteriol 192 2908 2919 10.1128/JB.01266-09 20233923 

  62. 62 Yamaguchi Y Park JH Inouye M 2009 MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli J Biol Chem 284 28746 28753 10.1074/jbc.M109.032904 19690171 

  63. 63 Fraikin N Rousseau CJ Goeders N Van Melderen L 2019 Reassessing the role of the type II MqsRA toxin-antitoxin system in stress response and biofilm formation: mqsA is transcriptionally uncoupled from mqsR mBio 10 e02678 19 10.1128/mBio.02678-19 31848281 

  64. 64 Gonzalez Barrios AF Zuo R Hashimoto Y Yang L Bentley WE Wood TK 2006 Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022) J Bacteriol 188 305 316 10.1128/JB.188.1.305-316.2006 16352847 

  65. 65 Kim Y Wood TK 2010 Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli Biochem Biophys Res Commun 391 209 213 10.1016/j.bbrc.2009.11.033 19909729 

  66. 66 Brown BL Grigoriu S Kim Y 2009 Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties PLoS Pathog 5 e1000706 10.1371/journal.ppat.1000706 20041169 

  67. 67 Mhlanga-Mutangadura T Morlin G Smith AL Eisenstark A Golomb M 1998 Evolution of the major pilus gene cluster of Haemophilus influenzae J Bacteriol 180 4693 4703 10.1128/JB.180.17.4693-4703.1998 9721313 

  68. 68 Makarova KS Grishin NV Koonin EV 2006 The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria Bioinformatics 22 2581 2584 10.1093/bioinformatics/btl418 16895922 

  69. 69 Turnbull KJ Gerdes K 2017 HicA toxin of Escherichia coli derepresses hicAB transcription to selectively produce HicB antitoxin Mol Microbiol 104 781 792 10.1111/mmi.13662 28266056 

  70. 70 Kawano M Aravind L Storz G 2007 An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin Mol Microbiol 64 738 754 10.1111/j.1365-2958.2007.05688.x 17462020 

  71. 71 Emond E Dion E Walker SA Vedamuthu ER Kondo JK Moineau S 1998 AbiQ, an abortive infection mechanism from Lactococcus lactis Appl Environ Microbiol 64 4748 4756 10.1128/AEM.64.12.4748-4756.1998 9835558 

  72. 72 Forde A Fitzgerald GF 1999 Bacteriophage defence systems in lactic acid bacteria Antonie Van Leeuwenhoek 76 89 113 10.1023/A:1002027321171 10532374 

  73. 73 Samson JE Spinelli S Cambillau C Moineau S 2013 Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system Mol Microbiol 87 756 768 10.1111/mmi.12129 23279123 

  74. 74 Belanger M Moineau S 2015 Mutational analysis of the antitoxin in the lactococcal Type III toxin-antitoxin system AbiQ Appl Environ Microbiol 81 3848 3855 10.1128/AEM.00572-15 25819963 

  75. 75 Fineran PC Blower TR Foulds IJ Humphreys DP Lilley KS Salmond GP 2009 The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair Proc Natl Acad Sci U S A 106 894 899 10.1073/pnas.0808832106 19124776 

  76. 76 Short FL Pei XY Blower TR 2013 Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot Proc Natl Acad Sci U S A 110 E241 249 10.1073/pnas.1216039110 23267117 

  77. 77 Blower TR Pei XY Short FL 2011 A processed noncoding RNA regulates an altruistic bacterial antiviral system Nat Struct Mol Biol 18 185 190 10.1038/nsmb.1981 21240270 

  78. 78 Muthuramalingam M White JC Bourne CR 2016 Toxin-antitoxin modules are pliable switches activated by multiple protease pathways Toxins (Basel) (Basel) 214 10.3390/toxins8070214 27409636 

  79. 79 Tian QB Ohnishi M Murata T Nakayama K Terawaki Y Hayashi T 2001 Specific protein-DNA and protein-protein interaction in the hig gene system, a plasmid-borne proteic killer gene system of plasmid Rts1 Plasmid 45 63 74 10.1006/plas.2000.1506 11322821 

  80. 80 Samson JE Belanger M Moineau S 2013 Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages J Bacteriol 195 3947 3956 10.1128/JB.00296-13 23813728 

  81. 81 Takagi H Kakuta Y Okada T Yao M Tanaka I Kimura M 2005 Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects Nat Struct Mol Biol 12 327 331 10.1038/nsmb911 15768033 

  82. 82 Kamada K Hanaoka F 2005 Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin Mol Cell 19 497 509 10.1016/j.molcel.2005.07.004 16109374 

  83. 83 Schureck MA Maehigashi T Miles SJ 2014 Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex J Biol Chem 289 1060 1070 10.1074/jbc.M113.512095 24257752 

  84. 84 Ruangprasert A Maehigashi T Miles SJ Giridharan N Liu JX Dunham CM 2014 Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ J Biol Chem 289 20559 20569 10.1074/jbc.M114.573006 24898247 

  85. 85 Harrison JJ Wade WD Akierman S 2009 The chromosomal toxin gene yafQ is a determinant of multi-drug tolerance for Escherichia coli growing in a biofilm Antimicrob Agents Chemother 53 2253 2258 10.1128/AAC.00043-09 19307375 

  86. 86 Maisonneuve E Castro-Camargo M Gerdes K 2013 (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity Cell 154 1140 1150 10.1016/j.cell.2013.07.048 23993101 

  87. 87 Norton JP Mulvey MA 2012 Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli PLoS Pathog 8 e1002954 10.1371/journal.ppat.1002954 23055930 

  88. 88 Wang X Wood TK 2011 Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response Appl Environ Microbiol 77 5577 5583 10.1128/AEM.05068-11 21685157 

  89. 89 Helaine S Cheverton AM Watson KG Faure LM Matthews SA Holden DW 2014 Internalization of Salmonella by macrophages induces formation of nonreplicating persisters Science 343 204 208 10.1126/science.1244705 24408438 

  90. 90 Pontes MH Groisman EA 2019 Slow growth determines nonheritable antibiotic resistance in Salmonella enterica Sci Signal 12 eaax3938 10.1126/scisignal.aax3938 31363068 

  91. 91 Harms A Fino C Sorensen MA Semsey S Gerdes K 2017 Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells mBio 8 e01964 17 10.1128/mBio.01964-17 29233898 

  92. 92 Zhu L Inoue K Yoshizumi S 2009 Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP J Bacteriol 191 3248 3255 10.1128/JB.01815-08 19251861 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로