$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bond behavior investigation of ordinary concrete-rebar with hinged beam test and eccentric pull-out test

Computers & concrete, v.26 no.6, 2020년, pp.587 - 593  

Arslan, Mehmet E. (Department of Civil Engineering, Duzce University) ,  Pul, Selim (Department of Civil Engineering, Karadeniz Technical University)

Abstract AI-Helper 아이콘AI-Helper

In this study, bond behavior of ordinary concrete and rebars with different diameters and development length was investigated by using Hinged Beam Test (HBT) and Eccentric Pull-Out Test (EPT) comparatively. For this purpose, three different rebar size and development length depending on rebar diamet...

주제어

참고문헌 (20)

  1. Arezoumandi, M., Steele, A.R. and Volz, J.S. (2018), "Evaluation of the bond strengths between concrete and reinforcement as a function of recycled concrete aggregate replacement level", Struct., 16, 73-81. https://doi.org/10.1016/j.istruc.2018.08.012. 

  2. Arslan, M.E. (2007), "Investigation of bond strength of structural lightweight aggregate concrete and ordinary concrete comparatively in bending", M.Sc. Dissertation, Karadeniz Technical University, Trabzon. 

  3. Arslan, M.E. and Durmus, A. (2011), "Investigation of bond behavior between lightweight aggregate concrete and steel rebar using bending test", Comput. Concrete, 8(4), 465-572. http://dx.doi.org/10.12989/cac.2011.8.4.465. 

  4. Arslan, M.E. and Durmus, A. (2014), "Fuzzy logic approach for estimating bond behavior of lightweight concrete", Comput. Concrete, 14(3), 233-245. 

  5. EN 10080-2005 (2005), Steel for the Reinforcement of Concrete - Weldable Reinforcing Steel-General, European Standards. 

  6. Ersoy, U. and O zcebe, G. (2001), Reinforced Concrete: Basic Principles, Calculation in accordance with TS-500-2000 and Turkish Seismic Code (1998), Evrim Pulishing, Istanbul, Turkey. 

  7. Falope, F.O., Lanzoni, L. and Tarantino, A.M. (2018), "Modified hinged beam test on steel fabric reinforced cementitious matrix (SFRCM)", Compos. Part B: Eng., 146, 232-243. https://doi.org/10.1016/j.compositesb.2018.03.019. 

  8. Hossain, K.M.A., Ametrano, D. and Lachemi, M. (2017), "Bond strength of GFRP bars in ultra-high strength concrete using RILEM beam tests", J. Build. Eng., 10, 69-79. https://doi.org/10.1016/j.jobe.2017.02.005. 

  9. Ichinose, T., Kanayama, Y., Inoue, Y. and Bolander, J.E. (2004), "Size effect on bond strength of deformed bars", Constr. Build. Mater., 18(7), 549-558. https://doi.org/10.1016/j.conbuildmat.2004.03.014. 

  10. Kabir, M.I., Shrestha, R. and Samali, B. (2016), "Effects of applied environmental conditions on the pull-out strengths of CFRP-concrete bond", Constr. Build. Mater., 114, 817-830. https://doi.org/10.1016/j.conbuildmat.2016.03.195. 

  11. Kotynia, R., Szczech, D. and Kaszubska, M. (2017), "Bond behavior of GRFP bars to concrete in beam test", Procedia Eng., 193, 401-408. https://doi.org/10.1016/j.proeng.2017.06.230. 

  12. Lin, H. and Zhao, Y. (2016), "Effects of confinements on the bond strength between concrete and corroded steel bars", Constr. Build. Mater., 118, 127-138. https://doi.org/10.1016/j.conbuildmat.2016.05.040. 

  13. Lin, H., Zhao, Y., Ozbolt, J. and Reinhardt, H.W. (2017), "Bond strength evaluation of corroded steel bars via the surface crack width induced by reinforcement corrosion", Eng. Struct., 152, 506-522. https://doi.org/10.1016/j.engstruct.2017.08.051. 

  14. Ozkal, F.M., Polat, M., Ya?an, M. and Ozturk, M.O. (2018), "Mechanical properties and bond strength degradation of GFRP and steel rebars at elevated temperatures", Constr. Build. Mater., 184, 45-57. https://doi.org/10.1016/j.conbuildmat.2018.06.203. 

  15. Pandurangan, K., Dayanithy, A. and Prakash, S. (2016), "Influence of treatment methods on the bond strength of recycled aggregate concrete", Constr. Build. Mater., 120, 212-221. https://doi.org/10.1016/j.conbuildmat.2016.05.093. 

  16. Wang, X.H., Chen, B. and Tang, P. (2018), "Experimental and analytical study on bond strength of normal uncoated and epoxycoated reinforcing bars", Constr. Build. Mater., 189, 612-628. https://doi.org/10.1016/j.conbuildmat.2018.09.010. 

  17. Xiao, J., Hou, Y. and Huang, Z. (2014), "Beam test on bond behavior between high-grade rebar and high-strength concrete after elevated temperatures", Fire Saf. J., 69, 23-35. https://doi.org/10.1016/j.firesaf.2014.07.001. 

  18. Yang, H., Deng, Z. and Ingham, J.M. (2016) "Bond position function between corroded reinforcement and recycled aggregate concrete using beam tests", Constr. Build. Mater., 127, 518-526. https://doi.org/10.1016/j.conbuildmat.2016.10.008. 

  19. Yeih, W., Chang, J.J. and Tsai, C.L. (2004), "Enhancement of the bond strength of epoxy coated steel by the addition of fly ash", Cement Concrete Compos., 26(4), 315-21. https://doi.org/10.1016/S0958-9465(02)00142-7. 

  20. Zhang, X., Wu, Z., Zheng, J., Dong, W. and Bouchair, A. (2016), "Ultimate bond strength of plain round bars embedded in concrete subjected to uniform lateral tension", Constr. Build. Mater., 117, 163-170. https://doi.org/10.1016/j.conbuildmat.2016.05.029. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로