$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 에티오피아 모바일화폐 서비스의 채택의향과 사용행태 결정요인
Determinants of Behavioral Intention and Usage of Mobile Money Services in Ethiopia 원문보기

디지털융복합연구 = Journal of digital convergence, v.18 no.2, 2020년, pp.23 - 35  

(에티오피아 정보통신부) ,  황기현 (숭실대학교 국제처)

초록
AI-Helper 아이콘AI-Helper

모바일 화폐는 금융 서비스 제공에 혁명을 일으켜 신흥국, 특히 동 아프리카 국가의 금융에 대한 접근성을 향상시킬 수 있는 금융 포용을 가능하게 하는 핵심 요소이다. 따라서 본 연구는 UTAUT2 모델을 이용하여 에티오피아에서 모바일 화폐 서비스를 채택하려는 개인의 행동 의도 및 실제 사용에 영향을 미치는 주요 결정 요인을 분석하는 것을 목표로 한다. 본 연구 모델과 가설은 에티오피아의 여러 지역에서 200명의 응답자를 추출하여 테스트했다. 데이터 분석 결과는 정부 지원, 성과 기대, 촉진 조건, 모바일 화폐 서비스에 대한 신뢰 및 노력 기대가 에티오피아의 모바일 화폐 서비스 사용에 영향을 미치는 주요 요인으로 도출된 반면, 사회적 영향과 낮은 거래 비용 요소는 통계적으로 유의하지 않은 것으로 나타났다. 본 연구 결과는 모바일 화폐 서비스의 낮은 수수료 책정보다는 적절한 정책과 규정을 통한 모바일 화폐 서비스 활성화를 위한 에티오피아 정부의 적극적 노력과 지원만이 자국의 모바일 화폐 서비스 채택 및 보급을 촉진할 수 있다는 유용한 정보를 제공한다.

Abstract AI-Helper 아이콘AI-Helper

Mobile Money is a key factor of financial inclusion that can revolutionize the financial service delivery and hence enhance access to finance in emerging economies, especially the East African countries. This study therefore aims to study the determinants of individual's behavioral intention and usa...

Keyword

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • However, there is few studies on Mobile Money or Banking services in Ethiopia[1]. Therefore, this study aims to investigate the major factors influencing the adoption of Mobile Money services by customers in Ethiopia where there is a large population and a high potential in economic growth in the future. It is also focused on providing some recommendations on how to accelerate financial inclusion using such services.
  • This study is focused on investigating the users’ behavioral intention on the usage of Mobile Money services by Ethiopia’s citizens.
  • This study was designed to investigate factors that affect Behavioral Intension to use Mobile Money and Usage Behavior of Mobile Money services in Ethiopia. We used an integrated research model of UTAUT2 by adding two factors such as government support and trust on mobile money service.
  • The key objective of this research is to boost theoretic Mobile Money adoption studies and investigate the factors that influence the usage of Mobile Money. For this, by integrating “government support” and “trust on Mobile Money service” constructs to the existing UTAUT2 model, this research found that Effort Expectancy, Performance Expectancy, Trust on Mobile Money Service, Government Support and Facilitating Conditions strongly affect the usage of Mobile Money service in Ethiopia.
  • However, there are few UTAUT2-based studies compared to huge TAM-based ones. Therefore, the key theoretic contribution of this research is to demonstrate the feasibility and generality of UTAUT2 research model in relation to Mobile Money use in developing countries.
  • As mobile technology evolves rapidly and the convergence of ICT and finance accelerates, more research on the use of Mobile Money is needed over time. This study should include both quality of service and traceability factors to enable Mobile Money customers to recognize high quality services[12, 25]. Finally, the study was carried out in Ethiopia, where the mobile industry was not fully developed and Mobile Money was an infant stage.

가설 설정

  • H1: Performance Expectancy positively affects individual Behavioral Intension for using Mobile Money.
  • H2: Effort Expectancy positively affects individual Behavioral Intension for using MobileMoney.
  • H3: Social Influence positively affects individual Behavioral Intension for using MobileMoney.
  • H4: Lower Transaction Cost positively affects individual Behavioral Intension for using Mobile Money.
  • H5: Trust on Mobile Money Service positively affects individual Behavioral Intension for using Mobile Money.
  • H6: Government Support positively affects individual Behavioral Intension for using Mobile Money.
  • H7: Facilitating Conditions positively affect individual Behavior to use Mobile Money.
  • H8: Behavioral Intention positively affect individual Behavior to use Mobile Money.
  • In H3, Social Influence affect to behavioral intention was not statistically significant(p-value>0.05, p= 0.391), therefore this hypothesis was rejected.
  • With H6, Government Support has significant positive effect on behavioral intention to adopt Mobile Money services in Ethiopia(β = 0.366, p <0.001).
  • For H5, Customer’s Trust had significant positive effect on behavioral intention to adopt Mobile Money services in Ethiopia(β = 0.198, p <0.05).
  • For H4, Lower Transaction Cost to behavioral intention was not statistically significant(p-value>0.05, which is p=0.19), so this hypothesis was not supported.
  • For H7, Facilitating Conditions showed significant positive effect on usage behavior of Mobile Money services in Ethiopia(β = 0.264, p <0.001).
본문요약 정보가 도움이 되었나요?

참고문헌 (32)

  1. McKinsey Global Institute. (2016). Digital Finance For All: Powering Inclusive Growth in Emerging Economies. Full-report, September. 

  2. ITU. (2016). The Digital financial services ecosystem. Technical Report, ITU Focus Group. DIO: from:http://www.un.org/esa/ffd/wp-content/uploads/2016/01/Digital-Financial-Inclusion_ITU_IATF-Issue-Brief.pdf 

  3. P. K. Ozili. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18(4), 329-340. 

  4. K. Donovan. (2012). Mobile money for financial inclusion. Information and Communications for Development, 61(1), 61-73. 

  5. J. K. Winn & L. D. Koker. (2013). Introduction to Mobile Money in Developing Countries: Financial Inclusion and Financial Integrity Conference Special Issue. Washington Journal of Law, Technology and Arts, 8(3), 155-164. 

  6. T. B. Bereket. (2018). A Study on Factors Affecting the Usage of Mobile Money - Focused on Ethiopia. Master Thesis, Soongsil University, Seoul. 

  7. J. Firpo. (2009). E-Money-Mobile Money- Mobile Banking -What's the Difference. Private Sector Development. DOI:http://blogs.worldbank.org/psd/e-money-mobile-money-mobile-banking-what-s-the-difference 

  8. GSMA. (2016). State of the Industry Report on Mobile Money. Decade Edition: 2006-2016. DID:https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2017/03/GSMA_State-of-the-Industry-Report-on-Mobile-Money_2016.pdf 

  9. V. Venkatesh, M. G. Morris, G. B. Davis, & F. D. Davis.(2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. 

  10. V. Venkatesh, J. Y. Thong & X. Xu. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. 

  11. V. Bhatiasevi. (2016). An extended UTAUT model to explain the adoption of mobile banking. Information Development, 32(4), 799-814. 

  12. T. Zhou, , Y. Lu, & B. Wang.(2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in human behavior, 26(4), 760-767. 

  13. P. J. Chogo, & E. Sedoyeka.(2014). Exploring Factors Affecting Mobile Money Adoption in Tanzania. International Journal of Computing &ICT Research, 8(2), 53-64. 

  14. L. Ismail, M. B. Moya, K. Bwiino, & K. Ismael.(2017). Examining determinants of behavioural intention in adoption of mobile money transfer services in Uganda. ICTACT Journal on Management Studies, 3(1), 433-439. 

  15. A. S. Yang. (2009). Exploring adoption difficulties in mobile banking services. Canadian Journal of Administrative Sciences, 26(2), 136-149. 

  16. P. Tobbin. (2012). Towards a model of adoption in mobile banking by the unbanked: a qualitative study. Info, 14(5), 74-88. 

  17. Chuchuen, C. (2016). The Perception of Mobile Banking Adoption: The Study of Behavioral, Security, and Trust in Thailand. International Journal of Social Science and Humanity, 6(7), 547-550. 

  18. E. Berger & C. Nakata. (2013). Implementing Technologies for Financial Service Innovations in Base of the Pyramid Markets: Implementing Technologies for Financial Service Innovations. Journal of Product Innovation Management, 30(6), 1199-1211. 

  19. E Berger, & C. Nakata.(2013). Implementing Technologies for Financial Service Innovations in Base of the Pyramid Markets: Implementing Technologies for Financial Service Innovations. Journal of Product Innovation Management, 30(6), 1199-1211. 

  20. P. J. Chogo & E. Sedoyeka. (2014). Exploring Factors Affecting Mobile Money Adoption in Tanzania. International Journal of Computing & ICT Research, 8(2), 53-64. 

  21. J. Hair, W. Blake, B. Babin & R. Tatham.(2006). Multivariate Data Analysis. New Jersey: Prentice Hall. 

  22. C. H. Jung, S. H. Namn. (2014). Cloud Computing Acceptance at Individual Level Based on Extended UTAUT. Journal of Digital Convergence, 12(1), 287-294. 

  23. C. Chuchuen. (2016). The Perception of Mobile Banking Adoption: The Study of Behavioral, Security, and Trust in Thailand. International Journal of Social Science and Humanity, 6(7), 547-550. 

  24. S. T. K., Myo & G. H. Hwang. (2017). Effect of Mobile Devices on the Use Intention and Use of Mobile Banking Service in Myanmar. Journal of digital convergence, 15(6), 71-82. 

  25. K. B. Kim & J. Y. Yun. (2015). Comparison and Analysis on Mobile Payment in terms of Security : Survey. Journal of IT Convergence Society for SMB, 5(3), 15-20. 

  26. A. Y. L. Chong, F. T. Chan & K. B. Ooi. (2012). Predicting consumer decisions to adopt mobile commerce: Cross country empirical examination between China and Malaysia. Decision Support Systems, 53(1), 34-43. 

  27. A. Violaine & G. H. Hwang. (2019). Key Factors Affecting Students' Satisfaction and Intention to Use e-Learning in Rwanda's Higher Education. Journal of digital convergence, 17(5), 99-108. 

  28. S. H. Lee & D. W. Lee. (2015). FinTech-Conversions of Finance Industry based on ICT. Journal of the Korea Convergence Society, 6(3), 97-102. 

  29. S. S. Shin, Y. S. Jeong & Y. J An. (2015). A Study of Analysis and Response and Plan for National and International Security Practices using Fin-Tech Technologies. Journal of IT Convergence Society for SMB, 5(3), 1-7. 

  30. C. H. Yoon & G. D. Choi. (2014). The Effects of National Culture on Ethical Decision-Making in the Internet Context : An Exploratory Analysis. Journal of digital convergence, 12(12), 23-36. 

  31. H. J. Lee, O. C. Na, S. Y. Sung. & H. B. Chang. (2015). A Design on Security Governance Framework for Industry Convergence Environment. Journal of the Korea Convergence Society, 6(4), 33-40. 

  32. L. M. Aliyeva1 & G. H. Hwang. (2019). The Model to Implement the Cyber Security Policy and Strategy for Azerbaijan Information System. Journal of digital convergence, 17(5), 23-31. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로