$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Anti-Oral Microbial Activity and Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Stimulated MC3T3-E1 Osteoblastic Cells on a Titanium Surface 원문보기

Journal of dental hygiene science = 치위생과학회지, v.20 no.4, 2020년, pp.221 - 229  

Jeong, Moon-Jin (Department of Oral Histology and Developmental Biology, School of Dentistry, Chosun University) ,  Lim, Do-Seon (Department of Dental Hygiene, Graduate School of Public Health Science, Eulji University) ,  Heo, Kyungwon (Department of Oral Histology and Developmental Biology, School of Dentistry, Chosun University) ,  Jeong, Soon-Jeong (Department of Dental Hygiene & Institute of Basic Science for Well-Aging, Youngsan University)

Abstract AI-Helper 아이콘AI-Helper

Background: The purpose of this study was to investigate the anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid (RA) in lipopolysaccharide (LPS)-stimulated MC3T3-E1 osteoblastic cells on a titanium (Ti) surface during osseointegration, and to confirm the possibility of usi...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • ) for 1 hour. The development was performed using an X-ray film (FUJI FILM, Tokyo, Japan) after detection using an ECL solution (Merck Millipore). The intensity of bands was measured using a Science Lab Image Gauge (FUJI FILM, Tokyo, Japan).
  • The various studies on the antimicrobial activities of RA against oral microorganisms causing oral diseases, including PI, are insufficient, and there are no studies on the antiinflammatory effect of RA in the lipopolysaccharide (LPS)-stimulated osteoblasts on the Ti surface to enable the elucidation of its potential for the regulation of PI. The purpose of this study was to investigate the antimicrobial activity of RA against oral microorganisms and the anti-inflammatory effect of RA on LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface during osseointegration, and to confirm the possibility of using RA as a safe natural substance for the control of PI in Ti-based dental implants.

대상 데이터

  • All the experiments were carried out in triplicate. All the data were expressed as means±standard deviations.
  • Microbial strains to confirm the antimicrobial activity of RA against oral microorganisms were purchased from the Korea Microbial Conservation Center (KCCM) and the Gene Bank (KCTC) and used in the experiment (Table 1). S.
  • ) agar and broth. The fungus, C. albicans was cultured in potato dextrose agar (MB cell Ltd.) and broth (MB cell Ltd.) and used in the experiment.

데이터처리

  • , Chicago, IL, USA). Statistically significant differences were determined using the Student’s t-test. The significance level for determining statistical significance was set at 0.

이론/모형

  • Total RNA was extracted by processing according to the manufacturer’s method using RiboEXTM reagent (GeneAll, Seoul, Korea). Complementary DNA (cDNA) was synthesized using 1 g of isolated total RNA using RT Premix (GeNet Bio, Daejeon, Korea).
본문요약 정보가 도움이 되었나요?

참고문헌 (29)

  1. Jeong SJ, Jeong MJ: Effect of thymosin beta4 on the differentiation and mineralization of MC3T3-E1 cell on a titanium surface. J Nanosci Nanotechnol 16: 1979-1983, 2016. https://doi.org/10.1166/jnn.2016.11928 

  2. Choi BD, Lee SY, Jeong SJ, et al.: Secretory leukocyte protease inhibitor promotes differentiation and mineralization of MC3T3-E1 preosteoblasts on a titanium surface. Mol Med Rep 14: 1241-1246, 2016. https://doi.org/10.3892/mmr.2016.5381 

  3. Kokubo T, Yamaguchi S: Bioactive Ti metal and its alloys prepared by chemical treatments: state-of-the-art and future trends. Adv Eng Mater 12: B579-B591, 2010. https://doi.org/10.1002/adem.201080087 

  4. Khang D, Choi J, Im YM, et al.: Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 33: 5997-6007, 2012. https://doi.org/10.1016/j.biomaterials.2012.05.005 

  5. Yamamoto H, Ogawa T: Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci Biotechnol Biochem 66: 921-924, 2002. https://doi.org/10.1271/bbb.66.921 

  6. Pokrowiecki R, Mielczarek A, Zareba T, Tyski S: Oral microbiome and peri-implant diseases: where are we now? Ther Clin Risk Manag 13: 1529-1542, 2017. https://doi.org/10.2147/TCRM.S139795 

  7. Wachi T, Shuto T, Shinohara Y, Matono Y, Makihira S: Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology 327: 1-9, 2015. https://doi.org/10.1016/j.tox.2014.10.016 

  8. Bernardes WA, Lucarini R, Tozatti MG, et al: Antimicrobial activity of Rosmarinus officinalis against oral pathogens: relevance of carnosic acid and carnosol. Chem Biodivers 7: 1835-1840, 2010. https://doi.org/10.1002/cbdv.200900301 

  9. Yeh HC, Lu JJ, Chang SC, Ge MC: Identification of microbiota in peri-implantitis pockets by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Sci Rep 9: 774, 2019. https://doi.org/10.1038/s41598-018-37450-5 

  10. Eswar P, Devaraj CG, Agarwal P: Anti-microbial activity of Tulsi {Ocimum sanctum (Linn.)} extract on a periodontal pathogen in human dental plaque: an invitro study. J Clin Diagn Res 10: ZC53-ZC56, 2016. https://doi.org/10.7860/JCDR/2016/16214.7468 

  11. Brett E, Flacco J, Blackshear C, Longaker MT, Wan DC: Biomimetics of bone implants: the regenerative road. Biores Open Access 6: 1-6, 2017. https://doi.org/10.1089/biores.2016.0044 

  12. Kim MY, Bo HH, Choi EO, et al.: Induction of apoptosis by Citrus unshiu peel in human breast cancer MCF-7 cells: involvement of ROS-dependent activation of AMPK. Biol Pharm Bull 41: 713-721, 2018. https://doi.org/10.1248/bpb.b17-00898 

  13. Kim HK, Lee JJ, Lee JS, Park YM, Yoon TR: Rosmarinic acid down-regulates the LPS-induced production of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) via the MAPK pathway in bone-marrow derived dendritic cells. Mol Cells 26: 583-589, 2008. 

  14. Moon DO, Kim MO, Lee JD, Choi YH, Kim GY: Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288: 183-191, 2010. https://doi.org/10.1016/j.canlet.2009.06.033 

  15. Bauer AW, Kirby WM, Sherris JC, Turck M: Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493-496, 1996. https://doi.org/10.1093/ajcp/45.4_ts.493 

  16. Jeong SJ, Wang G, Choi BD, et al.: Secretory leukocyte protease inhibitor (SLPI) increases focal adhesion in MC3T3 osteoblast on titanium surface. J Nanosci Nanotechnol 15: 200-204, 2015. https://doi.org/10.1166/jnn.2015.8383 

  17. Kwon DH, Cha HJ, Choi EO, et al.: Schisandrin A suppresses lipopolysaccharide-induced inflammation and oxidative stress in RAW 264.7 macrophages by suppressing the NF-κB, MAPKs and PI3K/Akt pathways and activating Nrf2/HO-1 signaling. Int J Mol Med 41: 264-274, 2018. https://doi.org/10.3892/ijmm.2017.3209 

  18. Min YK, Jeon JK, Kim SG, Chang KW: Inhibitory effects of Schizandra chinensis extracts on the growth and adsorption to saliva- coated HA beads of some oral bacteria. J Korean Acad Dent Health 25: 165-183, 2001. 

  19. Heo NS, Choi HJ, Hwang SM, Choi YW, Lee YG, Joo WH: Antimicrobial and anti-oral malodor efficacy of Schizandra chinensis extracts against oral pathogens. J Life Sci 23: 443-447, 2013. https://doi.org/10.5352/JLS.2013.23.3.443 

  20. Feng P, Weagant SD, Grant MA, Burkhardt W: BAM 4: enumeration of Escherichia coli and the coliform bacteria. 8th ed. U.S. Food and Drug Administration, Silver Spring, 2002. 

  21. Kim YB, Kim MJ, Park GS: Studies on the bfp gene, adherence to HEp-2 cells and serotyping of Escherichia coli isolated from urine. J Korean Soc Microbiol 33: 77-87, 1998. 

  22. Kim YB, Park JH, Kim MJ: Hydrophobicity test and DNA probe hybridization assay in the detection of enterotoxigenic Escherichia coli. J Korean Soc Microbiol 32: 15-25, 1997. 

  23. Choi HK, Lee YS, Kim MY, Kim KD, Cha JH, Yoo YJ: Induction of osteoclastogenesis-inducing cytokines and invasion by alive Aggregatibacter actinomycetemcomitans in osteoblasts. J Korean Acad Periodontol 37: 553-562, 2007. https://doi.org/10.5051/jkape.2007.37.3.553 

  24. Na HS, Jeong SY, Park MH, Kim S, Chung J: Nuclear factor-κB dependent induction of TNF-α and IL-1β by the Aggregatibacter actinomycetemcomitans Lipopolysaccharide in RAW 264.7 cells. Int J Oral Biol 39: 15-22, 2014. https://doi.org/10.11620/IJOB.2014.39.1.015 

  25. Jeon HD, An KS, Park CW, Lee HS, Kim SG: Relationship between adherence of Candida albicans to human buccal epithelial cell in vitro and their virulence. J Hanyang Med 2: 855-876, 1987. 

  26. Kim MJ, Shin SW, Lee JY. In vitro study on the adherence and penetration of Candida albicans into denture soft lining materials. J Korean Acad Prosthodont 44: 466-476, 2006. 

  27. Kang HJ, Jeong JS, Park NJ, et al.: An ethanol extract of Aster yomena (Kitam.) Honda inhibits lipopolysaccharide-induced inflammatory responses in murine RAW 264.7 macrophages. Biosci Trends 11: 85-94, 2017. https://doi.org/10.5582/bst.2016.01217 

  28. Jeong SJ, Choi BD, Lee HY, et al.: 660 nm red LED induces secretory leukocyte protease inhibitor (SLPI) in lipopolysaccharide-stimulated RAW264.7 cell. J Nanosci Nanotechnol 15: 5610-5616, 2015. https://doi.org/10.1166/jnn.2015.10465 

  29. Lee SY, Nho TH, Choi BD, Jeong SJ, Lim DS, Jeong MJ: Secretory leukocyte protease inhibitor reduces inflammation and alveolar bone resorption in LPS-induced periodontitis in rats and in MC3T3-E1 preosteoblasts. Anim Cells Syst 20: 344-352, 2016. https://doi.org/10.1080/19768354.2016.1250817 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로