$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답
Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls 원문보기

한국지진공학회논문집 = Journal of the Earthquake Engineering Society of Korea, v.24 no.1, 2020년, pp.39 - 47  

한지민 (한양대학교 건축공학과 대학원) ,  이창석 (한양대학교 건축공학과) ,  한상환 (한양대학교 건축공학과)

Abstract AI-Helper 아이콘AI-Helper

Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 조적채움벽이 RC 중력골조의 하중-변위 응답에 미치는 영향을 조사하였다. 이를 위해 조적채움벽이 기둥 순길이의 0%, 50%,100%만큼 채워진 중력골조를 제작하여 반복 횡하중 가력실험을 수행하였다.

가설 설정

  • 004/av (Fig. 5) 이후 완전탄소성거동한다고 가정하였다. 변위기반 전단파괴 변위비의 한계곡선은 붉은 실선으로, 하중기반 전단파괴 변위비의 한계곡선은 푸른점선으로 나타내었다.
  • 여기서 Gc는 기둥 단면의 전단탄성계수로, 콘크리트 탄성계수의 40%로 가정하였다.
  • 2절에서 측정된 값을 사용하였다. 주철근의 응력-변형률응답(stress-strain response)은 완전탄소성 거동으로 가정하였고, 콘크리트의 응력-변형률 응답은 Kent [30]의 연구를 참고하였다. My와M0.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Turgay T, Durmus MC, Binici B, Ozcebe G. Evaluation of the Predictive Models for Stiffness, Strength, and Deformation Capacity of RC Frames with Masonry Infill Walls. Journal of Structural Engineering. 2014 Oct;140(10):06014003. 

  2. Lee HS, Woo SW. Effect of masonry infills on seismic performance of a 3-storey R/C frame with non-seismic detailing. Earthquake Engineering & Structural Dynamics. 2002 Feb;31(2):353-378. 

  3. Kumar M, Rai DC, Jain SK. Ductility Reduction Factors for Masonry-Infilled Reinforced Concrete Frames. Earthquake Spectra. 2015 Feb;31(1):339-365. 

  4. Perrone D, Leone M, Aiello MA. Evaluation of the infill influence on the elastic period of existing RC frames. Eng Struct. 2016 Sep 15;123:419-433. 

  5. Crisafulli FJ. Seismic behaviour of reinforced concrete structures with masonry infills. University of Canterbury. Civil Engineering: University of Canterbury. c1997. 

  6. El-Dakhakhni WW, Elgaaly M, Hamid AA. Three-Strut Model for Concrete Masonry-Infilled Steel Frames. Journal of Structural Engineering. 2003 Feb;129(2):177-185. 

  7. Fiore A, Spagnoletti G, Greco R. On the prediction of shear brittle collapse mechanisms due to the infill-frame interaction in RC buildings under pushover analysis. Eng Struct. 2016 Aug;121:147-159. 

  8. Sattar S, Liel AB. Seismic Performance of Nonductile Reinforced Concrete Frames with Masonry Infill Walls-I: Development of a Strut Model Enhanced by Finite Element Models. Earthquake Spectra. 2016 May;32(2):795-818. 

  9. Park JH, Jeon SH, Kang KS. Seismic Performance Evaluation of Masonry-Infilled Frame Structures using Equivalent Strut Models. Journal of the Earthquake Engineering Society of Korea. 2012 16(1):47-59. 

  10. Guevara LT, Garcia LE. The Captive- and Short-Column Effects. Earthquake Spectra. 2005 Feb;21(1):141-160. 

  11. Yu E, Kim M, Jung D. A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame. Journal of the Earthquake Engineering Society of Korea. 2014 Mar;18(2):79-87. 

  12. Kim TW, Min CG. Analytical Study of the Effect of Full and Partial Masonry Infills on the Seismic Performance of School Buildings. Journal of the Earthquake Engineering Society of Korea. 2013;17(5):197-207. 

  13. Moon KH, Jeon YR, Lee CS, Han SW. Evaluation of Performance of Korean Existing School Buildings with Masonry Infilled Walls Against Earthquakes. Journal of the Earthquake Engineering Society of Korea. 2012 Dec;16(6):37-46. 

  14. Han SW, Kwon OS, Lee LH. Evaluation of the seismic performance of a three-story ordinary moment-resisting concrete frame. Earthquake Engineering & Structural Dynamics. 2004 May;33(6):669-685. 

  15. Han SW, Jee NY. Seismic behaviors of columns in ordinary and intermediate moment resisting concrete frames. Eng Struct. 2005 May;27(6):951-962. 

  16. Elwood KJ, Baradaran Shoraka M, Yang TY. Collapse Probability of Existing Concrete Buildings: The Evolution of Seismic Rehabilitation in North America. In: Fischinger M, editor. Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society. Geotechnical, Geological and Earthquake Engineering. Dordrecht: Springer Netherlands. c2014. pp. 469-483. 

  17. Yu E, Kim MJ, Lee SH, Kim CM. Relation between Shear Strength of Masonry infills and Seismic Performance of Masonry-infilled Frames. Journal of the Earthquake Engineering Society of Korea. 2015;19(4):173-181. 

  18. Kim BS, Park JH. Res ponse Modification Factors for Seismic Performance Evaluation of Non-seismic School Buildings with Partial Masonry Infills. Journal of the Earthquake Engineering Society of Korea. 2019;23(1):71-82. 

  19. Korean Ministry of Education. Standard design of school buildings. Report 80-92-DA. Korea. c1980. (in Korean) 

  20. Korea Standards Association. KS F 2405. Standard Test Method for Compressive Strength of Concrete. Republic of Korea. c2017. 

  21. Korea Standards Association. KS F 2403. Standard test methods for making and curing concrete specimens. Republic of Korea. c2014. 

  22. Korea Standards Association. KS B 0802. Method of tensile test for metallic materials. Republic of Korea. c2018. 

  23. ASTM. Standard Test Method for Compressive Strength of Masonry Prisms. ASTM C1314-142014. 

  24. ASTM. Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages. ASTM E519 / E519M-152015. 

  25. ACI. Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary. Farmington Hills, MI. c2005. 

  26. Elwood KJ, Eberhard MO. Effective Stiffness of Reinforced Concrete Columns. ACI Structural Journal. 2009 Jul-Aug;106(4):476-484. 

  27. ASCE 41-17. Seismic Evaluation and Retrofit of Existing Buildings. Reston, VA: American Society of Civil Engineers. c2017. 

  28. Elwood KJ, Eberhard MO. Effective Stiffness of Reinforced Concrete Columns. Pacific Earthquake Engineering Research Center. c2006. 

  29. Berry MP, Eberhard MO. Performance modeling strategies for modern reinforced concrete bridge columns Pacific Earthquake Engineering Research Center. Contract No.: PEER 2007/07. c2008. 

  30. Kent DC. Flexural members with confined concrete. Journal of the Structural Division. 1971;97(7):1969-1990. 

  31. Sezen H, Moehle JP. Shear Strength Model for Lightly Reinforced Concrete Columns. Journal of Structural Engineering. 2004 Nov;130(11):1692-1703. 

  32. Elwood KJ, Moehle JP. Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement. Earthquake Spectra. 2005 Feb;21(1):71-89. 

  33. LeBorgne MR, Ghannoum WM. Analytical Element for Simulating Lateral-Strength Degradation in Reinforced Concrete Columns and Other Frame Members. Journal of Structural Engineering. 2014 Jul;140(7):04014038 1-12. 

  34. Ghannoum WM, Moehle JP. Rotation-Based Shear Failure Model for Lightly Confined RC Columns. Journal of Structural Engineering. 2012 Oct;138(10):1267-1278. 

  35. Di Ludovico M, Verderame GM, Prota A, Manfredi G, Cosenza E. Experimental Behavior of Nonconforming RC Columns with Plain Bars under Constant Axial Load and Biaxial Bending. Journal of Structural Engineering. doi:10.1061/(ASCE)st. 1943-541x.0000703. 2013;139:897-914. 

  36. Rodrigues H, Furtado A, Arede A. Behavior of Rectangular Reinforced-Concrete Columns under Biaxial Cyclic Loading and Variable Axial Loads. Journal of Structural Engineering. doi:10.1061/(ASCE) st.1943-541x.0001345. 2016;142:04015085-1-8. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로