$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3차원 유한요소해석을 통한 shield TBM 터널 근접시공에 의한 인접 단독말뚝의 거동에 대한 연구
A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses 원문보기

Journal of Korean Tunnelling and Underground Space Association = 한국터널지하공간학회논문집, v.22 no.1, 2020년, pp.23 - 46  

전영진 (강원대학교 토목공학과) ,  전승찬 (강원대학교 토목공학과) ,  전상준 (강원대학교 토목공학과) ,  이철주 (강원대학교 토목공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 터널 근접 시공으로 인한 기 존재 단독말뚝의 공학적 거동을 파악하기 위하여 터널로부터 말뚝선단의 이격거리와 막장압의 변화를 고려한 3차원 유한요소해석을 수행하였다. 수치해석에서는 터널 막장압을 고려하여 말뚝의 거동을 분석하였으며, 터널굴착으로 유발되는 지반침하, 말뚝두부침하, 말뚝축력 및 말뚝-지반 사이의 경계면에서 발생하는 전단응력을 고찰하였다. 말뚝이 터널 크라운(crown) 바로 상부에 위치하고 말뚝선단까지의 수직 이격거리가 0.25D (여기서, D는 터널직경)인 경우 초기 응력의 50%에 해당하는 막장압을 적용할 경우 25%의 막장압을 적용한 것과 비교한 결과 말뚝두부의 침하가 약 38% 감소하였다. 또한, 막장압의 크기가 작을수록 지반침하, 말뚝의 축력 및 말뚝-지반 사이에서 발생하는 전단응력이 증가하며, 말뚝이 터널굴착 영향권 밖에 존재할 경우 말뚝에는 압축력 형태의 축력이 발생하였다. 따라서 막장압의 크기 및 터널-말뚝선단의 상대위치는 지반 침하와 말뚝 침하에 큰 영향을 미치는 것으로 분석되었다. 본 연구에서 수행된 연구결과의 경우 기존에 보고된 연구결과를 바탕으로 비교분석을 실시하였으며, 터널굴착으로 인한 말뚝의 거동을 심도 있게 분석하였다.

Abstract AI-Helper 아이콘AI-Helper

In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles to adjacent tunnelling by considering the tunnel face pressures and the relative location of pile tips with respect to the tunnel. The numerical m...

주제어

표/그림 (20)

질의응답

핵심어 질문 논문에서 추출한 답변
터널시공은 지반의 침하를 유발하여 어디에 영향을 미치는가? 최근 도심지에서 기 존재하는 말뚝 기초에 근접하여 다양한 터널시공이 이루어지고 있으며, 이러한 터널시공은 지반의 침하를 유발하여 말뚝의 공학적 거동에 영향을 미치게 된다(Lee, 2012a). 또한, 현재까지 수행되어온 기 연구성과에 의하면 터널시공은 터널 주변지반의 침하를 필연적으로 발생시키며 이로 인해 터널과 인접한 말뚝에는 변형이 유발되고 축력분포 역시 변하게 되어 말뚝의 사용성에 큰 영향을 받는다고 보고되었다(Lee, 2012a).
막장압의 크기 및 터널-말뚝선단의 상대위치가 지반 침하와 말뚝 침하에 영향을 주는 이유는 무엇인가? 수치해석에서는 터널 막장압을 고려하여 말뚝의 거동을 분석하였으며, 터널굴착으로 유발되는 지반침하, 말뚝두부침하, 말뚝축력 및 말뚝-지반 사이의 경계면에서 발생하는 전단응력을 고찰하였다. 말뚝이 터널 크라운(crown) 바로 상부에 위치하고 말뚝선단까지의 수직 이격거리가 0.25D (여기서, D는 터널직경)인 경우 초기 응력의 50%에 해당하는 막장압을 적용할 경우 25%의 막장압을 적용한 것과 비교한 결과 말뚝두부의 침하가 약 38% 감소하였다. 또한, 막장압의 크기가 작을수록 지반침하, 말뚝의 축력 및 말뚝-지반 사이에서 발생하는 전단응력이 증가하며, 말뚝이 터널굴착 영향권 밖에 존재할 경우 말뚝에는 압축력 형태의 축력이 발생하였다. 따라서 막장압의 크기 및 터널-말뚝선단의 상대위치는 지반 침하와 말뚝 침하에 큰 영향을 미치는 것으로 분석되었다.
터널시공이 말뚝에 미치는 영향은 무엇인가? 최근 도심지에서 기 존재하는 말뚝 기초에 근접하여 다양한 터널시공이 이루어지고 있으며, 이러한 터널시공은 지반의 침하를 유발하여 말뚝의 공학적 거동에 영향을 미치게 된다(Lee, 2012a). 또한, 현재까지 수행되어온 기 연구성과에 의하면 터널시공은 터널 주변지반의 침하를 필연적으로 발생시키며 이로 인해 터널과 인접한 말뚝에는 변형이 유발되고 축력분포 역시 변하게 되어 말뚝의 사용성에 큰 영향을 받는다고 보고되었다(Lee, 2012a). 이러한 문제를 해결하기 위해 수치해석 연구, 이론적 연구, 실내모형실험 및 원심모형실험 연구와 같은 많은 연구들이 수행되었다(Jacobsz, 2002; Pang, 2006; Cheng et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. Ahn, C.K., Yu, J.S., Lee, S.W. (2018), "Evaluation of the backfill injection pressure and its effect on ground settlement for shield TBM using numerical analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 2, pp. 269-286. 

  2. Bolton, M.D. (1991), A guide to Soil Mechanics, M D & K Bolton, Cambridge, pp. 313. 

  3. Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M. (2015), Reference manual, Plaxis 3D 2015 User's Manual, Delft, pp. 1-284. 

  4. Cheng, C.Y., Dasari, G.R., Chow, Y.K., Leung, C.F. (2007), "Finite element analysis of tunnel-soil-pile interaction using displacement controlled model", Tunnelling and Underground Space Technology, Vol. 22, No. 4, pp. 450-466. 

  5. Cho, W.S., Song, K.I., Kim, K.Y. (2014a), "The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 4, pp. 403-415. 

  6. Cho, W.S., Song, K.I., Ryu, H.H. (2014b), "Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 213-224. 

  7. Davisson, M.T. (1972), "High capacity piles", Proceedings of Lecture Series in Innovations in Foundation Construction, ASCE, Illinois Section, pp. 81-112. 

  8. Dias, T.G.S., Bezuijen, A. (2014a), "Pile tunnel interaction: Literature review and data analysis", Proceedings of the ITA World Tunnel Congress 2014, Iguassu Falls, May, pp. 1-10. 

  9. Dias, T.G.S., Bezuijen, A. (2014b), "Pile-tunnel interaction: A conceptual analysis", Proceedings of the 8th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, CRC Press, Seoul, August, 1, pp. 251-255. 

  10. Feng, S.H., Leung, C.F., Chow, Y.K., Dasari, G.R. (2002), "Centrifuge modelling of pile responses due to tunnelling", Proceedings of the The 15th KKCNN Symposium on Civil Engineering, Singapore, pp. 201-206. 

  11. Hartono, E., Leung, C.F., Shen, R.F., Chow, Y.K., Ng, Y.S., Tan, H.T., Hua, C.J. (2014), "Behaviour of pile above tunnel in clay", Physical Modelling in Geotechnics, pp. 833-838. 

  12. Hong, Y., Soomro, M.A., Ng, C.W.W. (2015), "Settlement and load transfer mechanism of pile group due to side-by-side twin tunnelling", Computers and Geotechnics, Vol. 64, pp. 105-119. 

  13. Jacobsz, S.W. (2002), The effects of tunnelling on piled foundations, Ph.D. Thesis, University of Cambridge, pp. 1-348. 

  14. Jacobsz, S.W., Standing, J.R., Mair, R.J., Hagiwara, T., Sugiyama, T. (2004), "Centrifuge modelling of tunnelling near driven piles", Soils and Foundations, Vol. 44, No. 1, pp. 49-56. 

  15. Jeon, Y.J., Kim, J.S., Jeon, S.C., Jeon, S.J., Park, B.S., Lee, C.J. (2018), "A study on the behaviour of single piles to adjacent shield TBM tunnelling by considering face pressures", Journal of Korean Tunnelling and Underground Space Association, Vol. 20, No. 6, pp. 1003-1022. 

  16. Jeon, Y.J., Kim, S.H., Kim, J.S., Lee, C.J. (2017), "A study on the effects of ground reinforcement on the behaviour of pre-existing piles affected by adjacent tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 389-407. 

  17. Jeon, Y.J., Kim, S.H., Lee, C.J. (2015), "A study on the effect of tunnelling to adjacent single piles and pile groups considering the transverse distance of pile tips from the tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 6, pp. 637-652. 

  18. Jeon, Y.J., Lee, C.J. (2015), "A study on the behaviour of single piles to adjacent tunnelling in stiff clay", Journal of the Korean Geo-Environmental Society, Vol. 16, No. 6, pp. 13-22. 

  19. Kaalberg, F.J., Teunissen, E.A.H., Van Tol, A.F., Bosch, J.W. (2005), "Dutch research on the impact of shield tunneling on pile foundations", Geotechnical Aspects of Underground Construction in Soft Ground, Proceedings of the 5th International Conference of TC28 of the ISSMGE, Amsterdam, pp. 123-131. 

  20. Lee, C.J. (2012a), "Three-dimensional numerical analyses of the response of a single pile and pile groups to tunnelling in weak weathered rock", Tunnelling and Underground Space Technology, Vol. 32, pp. 132-142. 

  21. Lee, C.J. (2012b), "Behaviour of single piles and pile groups in service to adjacent tunnelling conducted in the lateral direction of the piles", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 4, pp. 337-356. 

  22. Lee, C.J. (2012c), "The response of a single pile and pile groups to tunnelling performed in weathered rock", Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5C, pp. 199-210. 

  23. Lee, C.J., Chiang, K.H. (2007), "Responses of single piles to tunnelling-induced soil movements in sandy ground", Canadian Geotechnical Journal, Vol. 44, No. 10, pp. 1224-1241. 

  24. Lee, C.J., Jeon, Y.J. (2015), "A study on the effect of the locations of pile tips on the behaviour of piles to adjacent tunnelling", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 2, pp. 91-105. 

  25. Lee, C.J., Jeon, Y.J., Kim, S.H., Park, I.J., (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomechanics and Engineering, Vol. 11, No. 4, pp. 553-570. 

  26. Lee, J.H., Lee, J.M., Lee, Y.J. (2012), "Behavior of the superstructure subjected to TBM tunnel excavation sequence", Proceedings of the KSCE 2012 Convention Conference & Civil EXPO, Gwangju, pp. 1334-1337. 

  27. Lee, Y.J. (2008), "A boundary line between shear strain formations associated with tunnelling adjacent to an existing piled foundation", Journal of Korean Tunnelling and Underground Space Association, Vol. 10, No. 3, pp. 283-293. 

  28. Liu, C., Zhang, Z., Regueiro, R.A. (2014), "Pile and pile group response to tunnelling using a large diameter slurry shield - Case study in Shanghai", Computers and Geotechnics, Vol. 59, pp. 21-43. 

  29. Mair, R.J., Williamson, M.G. (2014), "The influence of tunnelling and deep excavation on piled foundations", Proceedings of the Geotechnical Aspects of Underground Construction in Soft Ground, Seoul, pp. 21-30. 

  30. Marshall, A.M. (2009), Tunnelling in sand and its effect on pipelines and piles, Ph.D. Thesis, University of Cambridge, pp. 1-270. 

  31. Mroueh, H., Shahrour, I. (2008), "A simplified 3D model for tunnel construction using tunnel boring machines", Tunnelling and Underground Space Technology, Vol. 23, No. 1, pp. 38-45. 

  32. Ng, C.W.W., Lu, H. (2014), "Effects of the construction sequence of twin tunnels at different depths on an existing pile", Canadian Geotechnical Journal, Vol. 51, No. 2, pp. 173-183. 

  33. Ng, C.W.W., Lu, H., Peng, S.Y. (2013), "Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile", Tunnelling and Underground Space Technology, Vol. 35, pp. 189-199. 

  34. Ng, C.W.W., Soomro, M.A., Hong, Y. (2014), "Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling", Tunnelling and Underground Space Technology, Vol. 43, pp. 350-361. 

  35. Pang, C.H. (2006), The effects of tunnel construction on nearby pile foundation, Ph.D. Thesis, The National University of Singapore, pp. 1-387. 

  36. Plaxis 3D (2018), Reference manual, Plaxis 3D User's Manual. 

  37. Selemetas, D. (2005), The response of full-scale piles and piled structures to tunnelling, Ph.D. Thesis, University of Cambridge, pp. 1-302. 

  38. Selemetas, D., Standing, J.R. (2017). "Response of full-scale piles to EPBM tunnelling in London Clay", Geotechnique, Vol. 67, No. 9, pp. 823-836. 

  39. Selemetas, D., Standing, J.R., Mair, R.J. (2005), "The response of full-scale piles to tunnelling", Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Amsterdam, pp. 763-769. 

  40. Soomro, M.A., Ng, C.W.W., Memon, N.A., Bhanbhro, R. (2018), "Lateral behaviour of a pile group due to side-by-side twin tunnelling in dry sand: 3D centrifuge tests and numerical modelling", Computers and Geotechnics, Vol. 101, pp. 48-64. 

  41. Williamson, M.G. (2014), Tunnelling effects on bored piles in clay, Ph.D. Thesis, University of Cambridge, pp. 1-444. 

  42. Xu, Q., Zhu, H., Ma, X., Ma, Z., Li, X., Tang, Z., Zhuo, K. (2015), "A case history of shield tunnel crossing through group pile foundation of a road bridge with pile underpinning technologies in Shanghai", Tunnelling and Underground Space Technology, Vol. 45, pp. 20-33. 

  43. You, K.H., Kim, Y.J. (2017), "A study on numerical modeling method considering gap parameter and backfill grouting of the shield TBM tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 5, pp. 799-812. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로