$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Excellent toluene removal via adsorption by honeycomb adsorbents under high temperature and humidity conditions 원문보기

Environmental engineering research, v.25 no.2, 2020년, pp.171 - 177  

Cho, Min-Whee (enbion Inc.) ,  Kim, Jongjin (enbion Inc.) ,  Jeong, Jeong Min (enbion Inc.) ,  Yim, Bongbeen (enbion Inc.) ,  Lee, Hyun-Jae (enbion Inc.) ,  Yoo, Yoonjong (Korea Institute of Energy Research)

Abstract AI-Helper 아이콘AI-Helper

Removal through adsorption is the most widely used and effective treatment method for volatile organic compounds (VOCs) in exhaust gases. However, at high temperatures and humidity, adsorption is competitive due to the presence of moisture and unsmooth physical adsorption thereby deteriorating adsor...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, WAH/VAH-CH was prepared and evaluated on a fixed bed continuous adsorption/desorption system. WAH/VAH-DR was used for the evaluation by mounting WAH/VAH-CH on a rotary system.
  • 4(a) shows the toluene adsorption capacity of VAH-SH as a function of temperature. Input gas temperatures of 40, 50, and 60℃, absolute humidity of 28.5 gH2O/kg-dry air, initial toluene concentration of 100 ppm, and GHSV of 20,000 /h were considered in this study. Adsorption was carried out continuously to measure the toluene adsorption amount.
  • The shape, size, and distribution of particles on the surface of the WAH and VAH, fabricated in this study, were analyzed via scanning electron microscopy (SEM, TESCAN, Mira 3 LMV FEG, Czech). To determine the pore characteristics of the adsorbent, Brunauer-Emmett-Teller (BET) specific surface area (SBET), total pore volume (VT), and average pore diameter (Dp) were measured using a BET surface area analyzer (Micromeritics, ASAP2010, USA).

대상 데이터

  • Further, WAH-SR and VAH-SR with dimensions of 500 mm (diameter), 200 and 400 mm (length) was used to confirm the adsorption/removal efficiency. The WAH/VAH-DR, measuring 500 mm in diameter and 600 mm in total length, was fabricated by combining the desiccant and adsorbent in a ratio of 1:2 (v/v).
  • 1. The experimental apparatus consisted of an adsorbate generation module, adsorbent filling module, and analysis module. Toluene was injected into the adsorbent generation module at a constant concentration of 100 ppm using a mass flow controller.
  • The fabricated WAH and VAH was cut cylinders measuring 100 mm in diameter, 100 and 300 mm in length to prepare the WAH-SH and VAH-SH, respectively. The fabricated WAH and VAH were combined in a length ratio of 1:3 (v/v) at the adsorption honeycomb and then cut into cylinders measuring 100 mm in diameter and 400 mm in total length to prepare the WAH/VAH-CH.
  • ZSM-5 zeolite (SiO2/Al2O3 molar ratio > 100, UOP) powder was used as the adsorbent for the VAH.

이론/모형

  • The shape, size, and distribution of particles on the surface of the WAH and VAH, fabricated in this study, were analyzed via scanning electron microscopy (SEM, TESCAN, Mira 3 LMV FEG, Czech). To determine the pore characteristics of the adsorbent, Brunauer-Emmett-Teller (BET) specific surface area (SBET), total pore volume (VT), and average pore diameter (Dp) were measured using a BET surface area analyzer (Micromeritics, ASAP2010, USA).
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. Noordally E, Richmond JR, Drumm KJ. Catalytic oxidation processes for odour and VOC control. Stud. Environ. Sci. 1994;61;459-467. 

  2. Volkamer R, Jimenez JL, San Martini F, et al. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res. Lett. 2006;33:L17811. 

  3. Zou L, Luo Y, Hooper M, Hu E. Removal of VOCs by photocatalysis process using adsorption enhanced $TiO_2-SiO_2$ catalyst. Chem. Eng. Process. 2006;45:959-964. 

  4. Li WB, Wang JX, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal. Today 2009;148:81-87. 

  5. Mitsuma Y, Ota Y, Hirose T. Performance of thermal swing honeycomb VOC concentrators. J. Chem. Eng. Jpn. 1998;31;482-484. 

  6. Mitsuma Y, Yamauchi H, Hirose T. Analysis of VOC reversing adsorption and desorption characteristics for actual efficiency prediction for ceramic honeycomb adsorbent. J. Chem. Eng. Jpn. 1998;31:253-257. 

  7. Ichiura H, Okamura N, Kitaoka T, Tanaka H. Preparation of zeolite sheet using a papermaking technique. Part II. The strength of zeolite sheet and its hygroscopic characteristics. J. Mater. Sci. 2001;36:4921-4926. 

  8. Yoo YJ, Kim HS. Adsorption and desorption dynamics of toluene on high silica zeolite honeycomb adsorbent. In: Korean. Soc. Energy Proceedings on Spring Symposium; 2000. p. 307-312. 

  9. Motsuma Y, Ota Y, Hirose T. Performance of thermal swing honeycomb VOC Concentrators. J. Chem. Eng. Jpn. 1998;31:482-484. 

  10. Chang FT, Lin YC, Bai H, Pei BS. Adsorption and desorption characteristics of semiconductor volatile organic compounds on the thermal swing honeycomb zeolite concentrator. J. Air Waste Manage. Assoc. 2003;53:1384-1390. 

  11. Yang J, Chen Y, Cao L, Guo Y, Jia J. Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry. Environ. Sci. Technol. 2012:46:441-446. 

  12. Zhao XS, Ma Q, Lu GQ. VOC Removal: Comparison of MCM-41 with hydrophobic zeolites and activated carbon. Energ. Fuel. 1998;12:1051-1054. 

  13. Diaz E, Ordonez S, Vega A, Coca J. Adsorption characterization of different volatile organic compounds over alumina, zeolites and activated carbon using inverse gas chromatography. J. Chromatogr. A 2004;1049:139-146. 

  14. Takeuchi Y, Iwamoto H, Miyata N, Asano S, Harada M. Adsorption of 1-butanol and p-xylene vapor and their mixtures with high silica zeolites. Sep. Technol. 1995;5:23-34. 

  15. Lee SW, Kam SK, Lee MG. Comparison of breakthrough characteristics for binary vapors composed of acetone and toluene based on adsorption intensity in activated carbon fixed-bed reactor. J. Ind. Eng. Chem. 2007;13:911-916. 

  16. Monneyron P, Manero MH, Foussard JN. Measurement and modeling of single- and multi-component adsorption equilibria of VOC on high-silica zeolites. Environ. Sci. Technol. 2003;37:2410-2414. 

  17. Chuang CL, Chiang PC, Chang EE. Modeling VOCs adsorption onto activated carbon. Chemosphere 2003;53:17-27. 

  18. Bouhamra WA, Elkilani AS, Baker CGJ. Testing adsorbents capacities for indoor volatile organic compounds at optimum operating conditions. WIT Trans. Ecol. Environ. 2006;86:411-420. 

  19. Yang RT. Gas separation by adsorption processes. Boston:Butterworth; 1987. p. 1-48. 

  20. Brunaure S, Emmett PH. The use of low temperature van def waals adsorption isotherms in determining the surface areas of various adsorbents. J. Am. Chem. Soc. 1937;59:2682-2689. 

  21. Cho MW, An D, Yim B, et al. Toluene adsorption characteristics of zeolite depending on temperature and relative humidity. Odor Indoor Environ. 2016;15:368-374. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로