$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내 논필지 모니터링 자료를 이용한 APEX-Paddy 모델 적용성 평가
Evaluating the Performance of APEX-Paddy Model using the Monitoring Data of Paddy Fields in Iksan, South Korea 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.62 no.1, 2020년, pp.1 - 16  

모하마드 캄루자먼 (Department of Agricultural Engineering, Gyeongsang National University) ,  조재필 (Convergence Center for Watershed Management, Integrated Watershed Management Institute (IWMI)) ,  최순군 (Climate Change and Agro-Ecology Division, Department of Agricultural Environment, National Academy of Agricultural Science, RDA) ,  송정헌 (Department of Agricultural and Biological Engineering & Tropical Research and Education Center, University of Florida) ,  송인홍 (Department of Rural Systems Engineering, Research Institute of Agriculture and Life Sciences, Seoul National University) ,  황세운 (Department of Agricultural Engineering, Institute of Agriculture and Life Science, Gyeongsang National University)

초록
AI-Helper 아이콘AI-Helper

APEX 모형은 다양한 영농 활동의 토양과 물환경에 대한 영향을 필지 및 유역 규모로 평가하기 위해 개발된 모형이다. 최근 APEX의 주요 기작을 바탕으로 논에서의 수도작 운영에 따른 물수지, 양분 유출에 대한 모의가 가능하도록 한 APEX-Paddy가 고안된 바 있다. 본 연구에서는 익산 지역의 논 시험포 모니터링 자료를 이용하여 APEX-Paddy 모형의 적용성을 평가하고자 하였다. 2013년과 2014년의 논 유출량과 부하량 자료를 수집하고 자동보정 툴 APEX-CUTE 4.1과 추가적 수동보정을 통해 모형의 모의성능을 검토하고 한계점을 고찰하였다. 연구결과, 논의 물수지와 질소 배출부하량은 대체로 합리적인 수준의 모의성능을 보이는 한편 유사량과 인 배출부하량 모의에 있어 논의 담수상태 유사배출 기작에 대한 고려가 미흡하여 모의성능에 한계가 있는 것으로 분석되었으며 원인에 대해 고찰하였다. 더불어 자동보정 툴의 적용에 있어 매개변수 민감도를 바탕으로 한 수동보정 결과보다 정확도가 다소 떨어지는 경향을 보여 그 활용에 유의가 필요한 것으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

The APEX model has been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. Recently, a key component of APEX application, named APEX-Paddy, has been modified for...

주제어

표/그림 (15)

참고문헌 (51)

  1. Ahmad, S., A. Ahmad, C. M. T. Soler, H. Ali, M. Zia-Ul-Haq, and J. Anothai, 2012. Application of the CSM-CERES-Rice model for evaluation of plant density and nitrogen management of fine transplanted rice for an irrigated semiarid environment. Precis. Agric. 13: 200-218. doi:10.1007/s11119-011-9238-1. 

  2. APHA (American Public Health Association), 1995. Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association. Washington, DC, USA, 99-153. 

  3. Choi, S. K., J. Jeong, and M. K. Kim, 2017. Simulating the effects of agricultural management on water quality dynamics in rice paddies for sustainable rice production-model development and validation. Water 9(11): 869. doi: 10.3390/w9110869. 

  4. Choi, J. D., W. J. Park, K. W. Park, and K. J. Lim, 2013. Feasibility of SRI methods for reduction of irrigation and NPS pollution in Korea. Paddy and Water Environment 11(1-4): 241-8. doi:10.1007/s10333-012-0311-9. 

  5. Choi, J., G. Kim, W. Park, M. Shin, Y. Choi, S. Lee, D. Lee, and D. Yun, 2015. Effect of SRI methods on water use, NPS pollution discharge, and GHG emission in Korean trials. Paddy Water Environ 13: 205-213. doi: 10.1007/s10333-014-0422-6. 

  6. Douglas-Mankin, K. R., R. Srinivasan, and J. G. Arnold, 2010. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 53(5): 1423-1431. doi:10.13031/2013.34915 

  7. Duggupati, P., N. Pai, S. Ale, K. R. Douglas-Mankin, R. W., Zeckoski, J. Jeong, P. B. Parajuli, D. Saraswat, and M. A. Youssef, 2015. A recommended calibration and validation strategy for hydrologic and water quality models. American society of Agricultural and Biological Engineers 58(6): 1705-1719. doi:10.13031/trans.58.10712. 

  8. Havlik, P., U. A. Schneider, E. Schmid, H. Bottcher, S. Fritz, R. Skalsky, K. Aoki, S. De Cara, G. Kindermann, F. Kraxner, S. Leduc, I. McCallum, A. Mosnier, T. Sauer, and M. Obersteiner, 2011. Global land-use implications of first and second-generation biofuel targets. Energy Policy 39(10): 5690-5702. doi:10.1016/j.enpol.2010.03.030. 

  9. Hawkins, R. H., J. W. Timothy, E. W. Donald, and A. V. Joseph, 2009. Curve number hydrology: state of the practice. Reston, VA: American Society of Civil Engineers, 106. ISBN 978-0-7844-1044-2. 

  10. Hargreaves, G. H., and Z. A. Samani, 1985. Reference crop evapotranspiration from temperature. Transaction of ASAE 1(2): 96-99. doi:10.13031/2013.267. 

  11. Hansen, N. C., T. C. Daniel, A. N. Sharpley, and J. L. Lemunyon, 2002. The fate and transport of phosphorus in agricultural systems. Journal of Soil and Water Conservation 57(6): 408-417. 

  12. Hong, H. C., H. C. Choi, H. G. Hwang, Y. G. Kim, H. P. Moon, H. Y. Kim, J. D. Yea, Y. S. Shin, Y. H. Choi, Y. C. Cho, M. K. Baek, J. H. Lee, C. I. Yang, K. H. Jeong, S. N. Ahn, and S. J. Yang, 2012. A lodging-tolerance and dull rice cultivar 'Baegjinju'. Korean J Breed Sci 44(1): 51-56 (in Korean). 

  13. Jang, T. I., H. K. Kim, C. H. Seong, E. J. Lee, and S. W. Park, 2012. Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agricultural Water Management 104: 235-243. doi:10.1016/j.agwat.2011.12.022. 

  14. Jeon, J. H., C. G. Yoon, J. H. Ham, and K. W. Jung, 2005. Model development for surface drainage loading estimates from paddy rice fields. Paddy and Water Environment 3(2): 93-101. doi:10.1007/s10333-005-0007-5. 

  15. Kim, J. S., S. Y. Oh, and K. Y. Oh, 2006. Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season. J. Hydrol 327(1): 128-139. doi:10.1016/j.jhydrol.2005.11.062. 

  16. Kim, M., M. S. Kang, I. Song, K. Kim, J. H. Song, and J. R. Jang, 2015. Polliutant Loads Estimation from Paddy Fields using CREAMS during Non-Cropping Season. Journal of the Korean Society of Agricultural Engineers, Fall Meeting Conference Proceeding. 

  17. Kim, S. M., S. W. Park, J. J. Lee, B. L. Benham, and H. K. Kim, 2007. Modeling and assessing the impact of reclaimed wastewater irrigation on the nutrient loads from an agricultural watershed containing rice paddy fields. Journal of Environmental Science and Health, Part A, 42(3): 305-15. doi:10.1080/10934520601144543. 

  18. Kiniry, J. R., D. J. Major, R. C. Izaurralde, J. R. Williams, P. W. Gassman, M. Morrison, R. Bergentine, and R. P. Zenter, 1995. EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Canadian Journal of Plant Science 75: 679-688. doi: 10.4141/cjps95-114. 

  19. Kalk, F. S, 2018. Evaluation of the APEX model to simulate runoff, sediment, and phosphorus loss from agricultural fields in northeast Wisconsin (Unpublished master's thesis), University of Wisconsin-Green Bay, USA. 

  20. La, N., M. Lamers, V. V. Nguyen, and T. Streck, 2014. Modeling the fate of pesticides in paddy rice-fish pond farming systems in northern Vietnam. Pest Manag. Sci., 70: 70-79. 

  21. Lee, D. G., J. H. Song, J. H. Ryu, J. Lee, S. K. Choi, and M. S. Kang, 2018. Integrating the mechanisms of agricultural reservoir and paddy cultivation to the HSPF-MASA-CREAMS-PADDY System. Journal of the Korean Society of Agricultural Engineers 60(6): 1-12. doi: 10.5389/KSAE.2018.60.6.001. 

  22. MAFRA (Ministry of Agriculture, Food and Rural Affairs), 2015. Agriculture, Food and Rural Affairs Statistical Yearbook. Ministry of Agriculture, Food and Rural Affairs: Sejong (in Korean). 

  23. McElroy, A. D., S. Y. Chiu, J. W. Nebgen, A. Aleti, and F. W. Bennett, 1976. Loading functions for assessment of water pollution from nonpoint sources. Environ. Prot. Tech. Serv., EPA 600/2-76-151. 

  24. Morris, M. D., 1991. Factorial sampling plans for preliminary computational experiments. Technometrics 33(2): 161-174. doi:10.1002/ps.3527. 

  25. Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati, 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 58(6): 1763-1785. doi:10.13031/trans.58.10715. 

  26. Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50(3): 885-900. doi:10.13031/2013.23153. 

  27. Mudgal, A., S. H. Anderson, C. Baffaut, N. R. Kitchen, and E. J. Sadler, 2010. Effect of long-term soil and crop management on soil hydraulic properties for claypan soils. J. Soil Water Cons. 67(4): 284-299. doi:10.2489/jswc.65.6.393. 

  28. Matsuno, Y., K. Nakamura, T. Masumoto, H. Matsui, T. Kato, and Y. Sato, 2006. Prospects for multi functionality of paddy rice cultivation in Japan and other countries in monsoon Asia. Paddy Water Environ. 4: 189-197. doi: 10.1007/s10333-006-0048-4. 

  29. Onstad, C. A, and G. R. Foster, 1975. Erosion Modeling on a Watershed. Transactions of the American Society of Agricultural Engineers 18(2): 288-292. doi:10.1007/s10333-006-0048-4. 

  30. Ramirez-Avila, J. J., D. E. Radcliffe, D. Osmond, C. Bolster, A. Sharpley, and S. L. OrtegaAchury, A. Forsberg, and J. L. Oldham, 2017. Evaluation of the APEX model to simulate runoff quality form agricultural fields in the southern region of the United States. Journal of Environmental Quality 46: 1357-1464. doi:10.2134/jeq2017.07.0258. 

  31. Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703, USDA-ARS. 

  32. Rosenzweig, C., J. Elliott, D. Deryng, A. A. Ruane, C. Muller, A. Ameth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J. W. Jones, 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. PNAS Science Journal 111 (9): 3268-3273. doi:10.1073/pnas.1222463110. 

  33. Sharply, A., and D. Beegle, 2001. Managing Phosphorus for Agriculture and the Environment, The Pennsylvania State University, 112 Agricultural Administration Building, University Park, PA 16802, USA. 

  34. Seo, C. S., S. W. Park, S. J. Im, K. S. Yoon, S. M. Kim, and M. S. Kang, 2002. Development of CREAMS-PADDY model for simulating pollutants from irrigated paddies. Journal of the Korean Society of Agricultural Engineers 44(3): 146-156. 

  35. Song, J., M. S. Kang, I. Song, K. Lee, and J. Jang, 2011. Impacts of farming method on NPS pollutant loads from paddy fields using CREAMS-PADDY. Journal of the Korean Society of Agricultural Engineers, Fall Meeting Conference Proceeding. 

  36. Steglich, E. M., J. Jeong, and J. R. Williams, 2016. Agricultural Policy/Environmental eXtender Model: User's Manual, Version 1501. NRCS and AgriLife Research, Texas A&M System. 

  37. Takeda, I., and A. Fukushima, 2006. Long-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation system. Water Research 40(3), 569-78. doi:10.1016/j.watres.2005.08.034. 

  38. Tang, L., Y. Zhu, D. M. Hannaway, Y. Meng, L. Liu, and L. Chen, 2009. A rice growth and productivity model. NJAS Wagening. J. Life Sci., 57: 83-92. doi:10.1016/j.njas.2009.12.003. 

  39. Tsuchiya, R., T. Kato, and J. Jeong, 2015. SWAT model improvement for discharge process in rice paddies. In Proceedings of the PAWEES-INWEPF Joint International Conference, Kuala Lumpur, Malaysia, 19-21 August 2015. 

  40. Williams, J. R., J. G. Arnold, J. R. Kiniry, P. W. Gassman, and C. H. Green, 2008. History of model development at Temple, Texas. Hydrol. Sci. 53(5): 948-960. doi:10.1623/hysj.53.5.948. 

  41. Williams, J. R., and R. C. Izaurralde, 2005. The APEX model. BRC Rep (2005)-02, Blackland Res Center, Texas, A&M University, Temple, TX. 

  42. Williams, J. R., R. C. Izaurralde, and E. M. Steglich, 2012. Agricultural Policy/Environmental eXtender Model: Theoretical Documentation version 0806. Texas A&M AgriLife Research System. 

  43. Williams, J. R., 1975. Sediment yield prediction with Universal Equation using runoff energy factor. In: Present and prospective technology for predicting sediment yields and sources, 244-252, Agricultural Research Service, US Department of Agriculture. 

  44. Williams, J. R., and R. W. Hann, 1978. Optimal operation of large agricultural watersheds with water quality constraints. Texas Water Resources Institute, Texas A&M Univ., Tech. Rept. No. 96. 

  45. Wang, E., C. Xin, J. R. Williams, and C. Xu, 2006. Predicting soil erosion for alternative land uses. J Environ Qual 35: 459-467. doi:10.2134/jeq2005.0063. 

  46. Wang, X., J. R. Williams, P. W. Gassman, C. Baffaut, Izaurralde, R. C., J. Jeong, and J. R. Kiniry, 2012. EPIC and APEX: Model use, calibration, and validation. Trans. ASABE, 55(4): 1447-1462. 

  47. Wang, X and J. Jeong, 2016. APEX-CUTE 4 User Manual; Texas A&M AgriLife Research, Blackland Research and Extension Center, Texas A&M University: Temple, TX, USA. 

  48. Wischmeier, W. H., and D. D. Smith, 1978. Predicting rainfall erosion losses-a guide to conservation planning U.S. Department of Agriculture, Agriculture Handbook No. 537. 

  49. Yin, L., X. Wang, J. Pan, and P. Gassman, 2009. Evaluation of APEX for daily runoff and sediment yield from three plots in the Middle Huaihe River Watershed, China. Transactions of the ASABE, 52: 1833-1845. doi:10.13031/2013.29212. 

  50. Yoon, K. S., J. Y. Cho, J. K. Choi, and J. G. Son, 2006. Water management and N, P losses from paddy fields in southern Korea. Journal of the American Water Resources Association 42: 1205-16. doi:10.1111/j.1752-1688.2006.tb05607.x. 

  51. Zhang, Z. J., J. X. Yao, Z. D. Wang, X. Xu, X. Y. Lin, G. F. Czapar, and J. Y. Zhang, 2011. Improving water management practices to reduce nutrient export from rice paddy fields. Environ Technol 32(2): 197-209. doi:10.1080/09593330.2010.494689. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로