$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins 원문보기

Journal of microbiology and biotechnology, v.30 no.5, 2020년, pp.633 - 641  

Kwon, Soon-Kyeong (Division of Life Science, Gyeongsang National University) ,  Jun, Sung-Hoon (Electron Microscopy Research Center, Korea Basic Science Institute) ,  Kim, Jihyun F. (Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

Microbial rhodopsins are a superfamily of photoactive membrane proteins with the covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorh...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • We hypothesize that the structural rigidity and stability of TM helices A and B generated by stacked aromatic rings could support the diagonal flexibility and freedom of other transmembrane columns, resulting in functional innovation with respect to the extended ion specificity and absorption spectrum during the evolution of rhodopsins in this class.
본문요약 정보가 도움이 되었나요?

참고문헌 (76)

  1. 1 Spudich JL Yang CS Jung KH Spudich EN 2000 Retinylidene proteins: structures and functions from archaea to humans Annu. Rev. Cell Dev. Biol. 16 365 392 10.1146/annurev.cellbio.16.1.365 11031241 

  2. 2 Kandori H 2004 Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin Biochim. Biophys. Acta 1658 72 79 10.1016/j.bbabio.2004.03.015 15282177 

  3. 3 Ernst OP Lodowski DT Elstner M Hegemann P Brown LS Kandori H 2014 Microbial and animal rhodopsins: structures, functions, and molecular mechanisms Chem. Rev. 114 126 163 10.1021/cr4003769 24364740 

  4. 4 Fuhrman JA Schwalbach MS Stingl U 2008 Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6 488 494 10.1038/nrmicro1893 18475306 

  5. 5 Oesterhelt D Stoeckenius W 1971 Rhodopsin-like protein from the purple membrane of Halobacterium halobium Nat. New Biol. 233 149 152 10.1038/newbio233149a0 4940442 

  6. 6 Oesterhelt D Stoeckenius W 1973 Functions of a new photoreceptor membrane Proc. Natl. Acad. Sci. USA 70 2853 2857 10.1073/pnas.70.10.2853 4517939 

  7. 7 Hildebrand E Dencher N 1975 Two photosystems controlling behavioural responses of Halobacterium halobium Nature 257 46 48 10.1038/257046a0 1161001 

  8. 8 Schobert B Lanyi JK 1982 Halorhodopsin is a light-driven chloride pump J. Biol. Chem. 257 10306 10313 7107607 

  9. 9 Nagel G Ollig D Fuhrmann M Kateriya S Musti AM Bamberg E 2002 Channelrhodopsin-1: a light-gated proton channel in green algae Science 296 2395 2398 10.1126/science.1072068 12089443 

  10. 10 Sineshchekov OA Jung KH Spudich JL 2002 Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii Proc. Natl. Acad. Sci. USA 99 8689 8694 10.1073/pnas.122243399 12060707 

  11. 11 Beja O Aravind L Koonin EV Suzuki MT Hadd A Nguyen LP 2000 Bacterial rhodopsin: evidence for a new type of phototrophy in the sea Science 289 1902 1906 10.1126/science.289.5486.1902 10988064 

  12. 12 Mongodin EF Nelson KE Daugherty S Deboy RT Wister J Khouri H 2005 The genome of Salinibacter ruber : convergence and gene exchange among hyperhalophilic bacteria and archaea Proc. Natl. Acad. Sci. USA 102 18147 18152 10.1073/pnas.0509073102 16330755 

  13. 13 Balashov SP Imasheva ES Boichenko VA Anton J Wang JM Lanyi JK 2005 Xanthorhodopsin: a proton pump with a lightharvesting carotenoid antenna Science 309 2061 2064 10.1126/science.1118046 16179480 

  14. 14 Sharma AK Zhaxybayeva O Papke RT Doolittle WF 2008 Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments Environ. Microbiol. 10 1039 1056 10.1111/j.1462-2920.2007.01525.x 18218036 

  15. 15 Kwon SK Kim BK Song JY Kwak MJ Lee CH Yoon JH 2013 Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins Genome Biol. Evol. 5 187 199 10.1093/gbe/evs134 23292138 

  16. 16 Yoshizawa S Kumagai Y Kim H Ogura Y Hayashi T Iwasaki W 2014 Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria Proc. Natl. Acad. Sci. USA 111 6732 6737 10.1073/pnas.1403051111 24706784 

  17. 17 Inoue K Ono H Abe-Yoshizumi R Yoshizawa S Ito H Kogure K 2013 A light-driven sodium ion pump in marine bacteria Nat. Commun. 4 1678 10.1038/ncomms2689 23575682 

  18. 18 Inoue K Ito S Kato Y Nomura Y Shibata M Uchihashi T 2016 A natural light-driven inward proton pump Nat. Commun. 7 13415 10.1038/ncomms13415 27853152 

  19. 19 Needham DM Yoshizawa S Hosaka T Poirier C Choi CJ Hehenberger E 2019 A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators Proc. Natl. Acad. Sci. USA 116 20574 20583 10.1073/pnas.1907517116 31548428 

  20. 20 Pushkarev A Inoue K Larom S Flores-Uribe J Singh M Konno M 2018 A distinct abundant group of microbial rhodopsins discovered using functional metagenomics Nature 558 595 599 10.1038/s41586-018-0225-9 29925949 

  21. 21 Kim K Kwon SK Jun SH Cha JS Kim H Lee W 2016 Crystal structure and functional characterization of a light-driven chloride pump having an NTQ motif Nat. Commun. 7 12677 10.1038/ncomms12677 27554809 

  22. 22 Morizumi T Ou WL Van Eps N Inoue K Kandori H Brown LS 2019 X-ray crystallographic structure and oligomerization of Gloeobacter rhodopsin Sci. Rep. 9 11283 10.1038/s41598-019-47445-5 31375689 

  23. 23 Shibata M Inoue K Ikeda K Konno M Singh M Kataoka C 2018 Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy Sci. Rep. 8 8262 10.1038/s41598-018-26606-y 29844455 

  24. 24 Luecke H Schobert B Stagno J Imasheva ES Wang JM Balashov SP 2008 Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore Proc. Natl. Acad. Sci. USA 105 16561 16565 10.1073/pnas.0807162105 18922772 

  25. 25 Balashov SP Imasheva ES Choi AR Jung KH Liaaen-Jensen S Lanyi JK 2010 Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group Biochemistry 49 9792 9799 10.1021/bi1014166 20942439 

  26. 26 Tsukamoto T Inoue K Kandori H Sudo Y 2013 Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile J. Biol. Chem. 288 21581 21592 10.1074/jbc.M113.479394 23740255 

  27. 27 Tsukamoto T Mizutani K Hasegawa T Takahashi M Honda N Hashimoto N 2016 X-ray crystallographic structure of thermophilic rhodopsin: implications for high thermal stability and optogenetic function J. Biol. Chem. 291 12223 12232 10.1074/jbc.M116.719815 27129243 

  28. 28 Tian B Hua Y 2010 Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria Trends Microbiol. 18 512 520 10.1016/j.tim.2010.07.007 20832321 

  29. 29 Misra R Eliash T Sudo Y Sheves M 2019 Retinal-salinixanthin interactions in a thermophilic rhodopsin J. Phys. Chem. B 123 10 20 10.1021/acs.jpcb.8b06795 30525616 

  30. 30 Nakamura Y Kaneko T Sato S Mimuro M Miyashita H Tsuchiya T 2003 Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids DNA Res. 10 137 145 10.1093/dnares/10.4.137 14621292 

  31. 31 Choi AR Shi L Brown LS Jung KH 2014 Cyanobacterial light-driven proton pump, gloeobacter rhodopsin: complementarity between rhodopsin-based energy production and photosynthesis PLoS One 9 e110643 10.1371/journal.pone.0110643 25347537 

  32. 32 Imasheva ES Balashov SP Choi AR Jung KH Lanyi JK 2009 Reconstitution of Gloeobacter violaceus rhodopsin with a lightharvesting carotenoid antenna Biochemistry 48 10948 10955 10.1021/bi901552x 19842712 

  33. 33 Iyer ES Gdor I Eliash T Sheves M Ruhman S 2015 Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex J. Phys. Chem. B 119 2345 2349 10.1021/jp506639w 25144664 

  34. 34 Jana S Eliash T Jung KH Sheves M 2017 Retinal binding to Apo-Gloeobacter rhodopsin: the role of pH and retinal-carotenoid interaction J. Phys. Chem. B 121 10759 10769 10.1021/acs.jpcb.7b07523 29111729 

  35. 35 Rusch DB Halpern AL Sutton G Heidelberg KB Williamson S Yooseph S 2007 The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific PLoS Biol. 5 e77 10.1371/journal.pbio.0050077 17355176 

  36. 36 Jezberova J Jezbera J Hahn MW 2013 Insights into variability of actinorhodopsin genes of the LG1 cluster in two different freshwater habitats PLoS One 8 e68542 10.1371/journal.pone.0068542 23844219 

  37. 37 Sharma AK Sommerfeld K Bullerjahn GS Matteson AR Wilhelm SW Jezbera J 2009 Actinorhodopsin genes discovered in diverse freshwater habitats and among cultivated freshwater Actinobacteria ISME J. 3 726 737 10.1038/ismej.2009.13 19242530 

  38. 38 Keffer JL Hahn MW Maresca JA 2015 Characterization of an unconventional rhodopsin from the freshwater actinobacterium Rhodoluna lacicola J. Bacteriol. 197 2704 2712 10.1128/JB.00386-15 26055118 

  39. 39 Nakamura S Kikukawa T Tamogami J Kamiya M Aizawa T Hahn MW 2016 Photochemical characterization of actinorhodopsin and its functional existence in the natural host Biochim. Biophys. Acta 1857 1900 1908 10.1016/j.bbabio.2016.09.006 27659506 

  40. 40 Dwulit-Smith JR Hamilton JJ Stevenson DM He S Oyserman BO Moya-Flores F 2018 acI actinobacteria assemble a functional actinorhodopsin with natively synthesized retinal Appl. Environ. Microbiol. 84 e01678 18 10.1128/AEM.01678-18 30315080 

  41. 41 Mizuno CM Rodriguez-Valera F Ghai R 2015 Genomes of planktonic Acidimicrobiales : widening horizons for marine Actinobacteria by metagenomics mBio 6 e02083 14 10.1128/mBio.02083-14 25670777 

  42. 42 Pushkarev A Beja O 2016 Functional metagenomic screen reveals new and diverse microbial rhodopsins ISME J. 10 2331 2335 10.1038/ismej.2016.7 26894445 

  43. 43 Kato Y Inoue K Kandori H 2015 Kinetic analysis of H + -Na + selectivity in a light-driven Na + -pumping rhodopsin J. Phys. Chem. Lett. 6 5111 5115 10.1021/acs.jpclett.5b02371 26673197 

  44. 44 Zhao H Ma B Ji L Li L Wang H Chen D 2017 Coexistence of light-driven Na + and H + transport in a microbial rhodopsin from Nonlabens dokdonensis J. Photochem. Photobiol. B 172 70 76 10.1016/j.jphotobiol.2017.05.004 28527429 

  45. 45 Li H Sineshchekov OA da Silva GF Spudich JL 2015 In vitro demonstration of dual light-driven Na(+)/H(+) pumping by a microbial rhodopsin Biophys. J. 109 1446 1453 10.1016/j.bpj.2015.08.018 26445445 

  46. 46 da Silva GF Goblirsch BR Tsai AL Spudich JL 2015 Cation-specific conformations in a dual-function ion-pumping microbial rhodopsin Biochemistry 54 3950 3959 10.1021/bi501386d 26037033 

  47. 47 Kovalev K Polovinkin V Gushchin I Alekseev A Shevchenko V Borshchevskiy V 2019 Structure and mechanisms of sodiumpumping KR2 rhodopsin Sci. Adv. 5 eaav2671 10.1126/sciadv.aav2671 30989112 

  48. 48 Tsunoda SP Prigge M Abe-Yoshizumi R Inoue K Kozaki Y Ishizuka T 2017 Functional characterization of sodium-pumping rhodopsins with different pumping properties PLoS One 12 e0179232 10.1371/journal.pone.0179232 28749956 

  49. 49 Gushchin I Shevchenko V Polovinkin V Kovalev K Alekseev A Round E 2015 Crystal structure of a light-driven sodium pump Nat. Struct. Mol. Biol. 22 390 395 10.1038/nsmb.3002 25849142 

  50. 50 Kato HE Inoue K Abe-Yoshizumi R Kato Y Ono H Konno M 2015 Structural basis for Na + transport mechanism by a lightdriven Na + pump Nature 521 48 53 10.1038/nature14322 25849775 

  51. 51 Inoue K Konno M Abe-Yoshizumi R Kandori H 2015 The role of the NDQ motif in sodium-pumping rhodopsins Angew. Chem. Int. Ed. Engl. 54 11536 11539 10.1002/anie.201504549 26215709 

  52. 52 Abe-Yoshizumi R Inoue K Kato HE Nureki O Kandori H 2016 Role of Asn112 in a light-driven sodium ion-pumping rhodopsin Biochemistry 55 5790 5797 10.1021/acs.biochem.6b00741 27673340 

  53. 53 Tahara S Takeuchi S Abe-Yoshizumi R Inoue K Ohtani H Kandori H 2015 Ultrafast photoreaction dynamics of a lightdriven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy J. Phys. Chem. Lett. 6 4481 4486 10.1021/acs.jpclett.5b01994 26582475 

  54. 54 Hontani Y Inoue K Kloz M Kato Y Kandori H Kennis JT 2016 The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy Phys. Chem. Chem. Phys. 18 24729 24736 10.1039/C6CP05240A 27550793 

  55. 55 Suomivuori CM Gamiz-Hernandez AP Sundholm D Kaila VRI 2017 Energetics and dynamics of a light-driven sodium-pumping rhodopsin Proc. Natl. Acad. Sci. USA 114 7043 7048 10.1073/pnas.1703625114 28611220 

  56. 56 Nakajima Y Tsukamoto T Kumagai Y Ogura Y Hayashi T Song J 2018 Presence of a haloarchaeal halorhodopsin-like Clpump in marine bacteria Microbes Environ. 33 89 97 10.1264/jsme2.ME17197 29553064 

  57. 57 Kandori H 2015 Ion-pumping microbial rhodopsins Front. Mol. Biosci. 2 52 10.3389/fmolb.2015.00052 26442282 

  58. 58 Sasaki J Brown LS Chon YS Kandori H Maeda A Needleman R 1995 Conversion of bacteriorhodopsin into a chloride ion pump Science 269 73 75 10.1126/science.7604281 7604281 

  59. 59 Hasemi T Kikukawa T Kamo N Demura M 2016 Characterization of a Cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump J. Biol. Chem. 291 355 362 10.1074/jbc.M115.688614 26578511 

  60. 60 Inoue K Koua FH Kato Y Abe-Yoshizumi R Kandori H 2014 Spectroscopic study of a light-driven chloride ion pump from marine bacteria J. Phys. Chem. B 118 11190 11199 10.1021/jp507219q 25166488 

  61. 61 Tsukamoto T Yoshizawa S Kikukawa T Demura M Sudo Y 2017 Implications for the light-driven chloride ion transport mechanism of Nonlabens marinus rhodopsin 3 by its photochemical characteristics J. Phys. Chem. B 121 2027 2038 10.1021/acs.jpcb.6b11101 28194973 

  62. 62 Hosaka T Yoshizawa S Nakajima Y Ohsawa N Hato M DeLong EF 2016 Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3 J. Biol. Chem. 291 17488 17495 10.1074/jbc.M116.728220 27365396 

  63. 63 Inoue K Nomura Y Kandori H 2016 Asymmetric functional conversion of eubacterial light-driven ion pumps J. Biol. Chem. 291 9883 9893 10.1074/jbc.M116.716498 26929409 

  64. 64 Anashkin VA Bertsova YV Mamedov AM Mamedov MD Arutyunyan AM Baykov AA 2018 Engineering a carotenoidbinding site in Dokdonia sp. PRO95 Na + -translocating rhodopsin by a single amino acid substitution Photosynth. Res. 136 161 169 10.1007/s11120-017-0453-0 28983723 

  65. 65 Konno M Kato Y Kato HE Inoue K Nureki O Kandori H 2016 Mutant of a light-driven sodium ion pump can transport cesium ions J. Phys. Chem. Lett. 7 51 55 10.1021/acs.jpclett.5b02385 26740141 

  66. 66 Inoue K Del Carmen Marin M Tomida S Nakamura R Nakajima Y Olivucci M 2019 Red-shifting mutation of light-driven sodium-pump rhodopsin Nat. Commun. 10 1993 10.1038/s41467-019-10000-x 31040285 

  67. 67 Mackin KA Roy RA Theobald DL 2014 An empirical test of convergent evolution in rhodopsins Mol. Biol. Evol. 31 85 95 10.1093/molbev/mst171 24077848 

  68. 68 Shalaeva DN Galperin MY Mulkidjanian AY 2015 Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodiumtranslocating rhodopsins Biol. Direct. 10 63 10.1186/s13062-015-0091-4 26472483 

  69. 69 Pinhassi J DeLong EF Beja O Gonzalez JM Pedros-Alio C 2016 Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology Microbiol. Mol. Biol. Rev. 80 929 954 10.1128/MMBR.00003-16 27630250 

  70. 70 Albers SV Van de Vossenberg JL Driessen AJ Konings WN 2001 Bioenergetics and solute uptake under extreme conditions Extremophiles 5 285 294 10.1007/s007920100214 11699642 

  71. 71 Hase CC Fedorova ND Galperin MY Dibrov PA 2001 Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons Microbiol. Mol. Biol. Rev. 65 353 370 10.1128/MMBR.65.3.353-370.2001 11528000 

  72. 72 Riedel T Gomez-Consarnau L Tomasch J Martin M Jarek M Gonzalez JM 2013 Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein PLoS One 8 e57487 10.1371/journal.pone.0057487 23526944 

  73. 73 Kwon YM Kim SY Jung KH Kim SJ 2016 Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria Microbiologyopen 5 212 223 10.1002/mbo3.321 26663527 

  74. 74 Guerrero LD Vikram S Makhalanyane TP Cowan DA 2017 Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems Environ. Microbiol. 19 3755 3767 10.1111/1462-2920.13877 28752953 

  75. 75 Hamilton JJ Garcia SL Brown BS Oyserman BO Moya-Flores F Bertilsson S 2017 Metabolic network analysis and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI mSystems 2 e00091 17 10.1128/mSystems.00091-17 28861526 

  76. 76 Wurzbacher C Salka I Grossart HP 2012 Environmental actinorhodopsin expression revealed by a new in situ filtration and fixation sampler Environ. Microbiol. Rep. 4 491 497 10.1111/j.1758-2229.2012.00350.x 23760893 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로