$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs 원문보기

The plant pathology journal, v.36 no.3, 2020년, pp.280 - 288  

Fang, Ying (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Choi, Jae Young (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Park, Dong Hwan (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Park, Min Gu (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Kim, Jun Young (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Wang, Minghui (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Kim, Hyun Ji (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Kim, Woo Jin (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University) ,  Je, Yeon Ho (Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are stron...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Synthesis of dsRNA. Candidate siRNA sites in target genes were predicted using BLOCK-iT RNAi Designer (https://rnaidesigner.thermofisher.com/rnaiexpress) and dsRNA sequences 500-700 bp in length and containing at least three candidate sites of siRNA were designed against each target gene. Single-strand cDNA of each target gene was synthesized from total RNA of L.
  • Single-strand cDNA of each target gene was synthesized from total RNA of L. striatellus using the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions and the target gene was amplified using KOD Neo FX DNA polymerase (Toyobo, Osaka, Japan) and primers with a T7 promoter sequence (5'-TAATACGACTCACTATAG-3') at the 5'-end (Supplementary Table 1) as previously described (Fang et al., 2017).
  • Comparative transcriptome analysis. To investigate genes in L. striatellus that were differentially expressed upon RSV infection, total raw reads from the RSVviruliferous and non-viruliferous L. striatellus individuals were mapped to the 3,703 contig sequences that were functionally categorized in the gene ontology (GO) analysis to obtain the FPKM values. While 885 genes were over two-fold up-regulated in RSV-viruliferous L.
  • Selection and validation of target genes for RNAi application. To investigate whether RSV transmission in L. striatellus could be suppressed by silencing host genes related to RSV transmission, we selected 8 genes identified as up-regulated in the RSV-viruliferous L. striatellus based on the comparative transcriptome analysis and qPCR validation of relative transcription level (Table 2). Among these RNAi target genes, 6 genes (all except contig nos.
  • striatellus nymphs that ingested vector-derived dsRNAs. To investigate whether dsRNAs against L. striatellus genes up-regulated in RSV-viruliferous L. striatellus suppress replication of RSV in L. striatellus, qPCR analysis of the transcription of RSV genes in RSV-viruliferous L. striatellus individuals that had ingested dsRNA was performed. The transcription level of NS3, which is crucial for RSV replication and act as a viral suppressor of RNAi, was significantly reduced in L.

데이터처리

  • Statistical analysis. Statistical analysis was performed by one-way ANOVA using SPSS Statistics version 24 (IBM Corp., Armonk, NY, USA). Multiple comparisons of mean values were performed by post hoc Scheffé's tests.

이론/모형

  • The relative transcription levels are expressed as fold differences in RSV-viruliferous L. striatellus relative to non-viruliferous L. striatellus as determined by qPCR and calculated using the 2-ΔΔCt method.
본문요약 정보가 도움이 되었나요?

참고문헌 (45)

  1. An S. B. Choi J. Y. Lee S. H. Fang Y. Kim J. H. Park D. H. Park M. G. Woo R. M. Kim W. J. Je Y. H. 2017 Silencing of rice stripe virus in Laodelphax striatellus using virus-derived double-stranded RNAs J. Asia-Pac. Entomol. 20 695 698 10.1016/j.aspen.2017.04.009 

  2. Bass C. Carvalho R. A. Oliphant L. Puinean A. M. Field L. M. Nauen R. Williamson M. S. Moores G. Gorman K. 2011 Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens Insect Mol. Biol. 20 763 773 10.1111/j.1365-2583.2011.01105.x 21929695 

  3. Bolger A. M. Lohse M. Usadel B. 2014 Trimmomatic: a flexible trimmer for Illumina sequence data Bioinformatics 30 2114 2120 10.1093/bioinformatics/btu170 24695404 

  4. David J.-P. Ismail H. M. Chandor-Proust A. Paine M. J. I. 2013 Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth Philos. Trans. R. Soc. Lond. B Biol. Sci. 368 20120429 10.1098/rstb.2012.0429 23297352 

  5. de Haro L. A. Dumon A. D. Mattio M. F. Arguello Caro E. B. Llauger G. Zavallo D. Blanc H. Mongelli V. C. Truol G. Saleh M.-C. Asurmendi S. del Vas M. 2017 Mal de Rio Cuarto virus infection triggers the production of distinctive viral-derived siRNA profiles in wheat and its planthopper vector Front. Plant Sci. 8 766 10.3389/fpls.2017.00766 28539933 

  6. Elzaki M. E. A. Zhang W. Feng A. Qiou X. Zhao W. Han Z. 2016 Constitutive overexpression of cytochrome P450 associated with imidacloprid resistance in Laodelphax striatellus (Fallen) Pest Manag. Sci. 72 1051 1058 10.1002/ps.4155 26395964 

  7. Fang Y. Choi J. Y. Lee S. H. Kim J. H. Park D. H. Park M. G. Woo R. M. Lee B. R. Kim W. J. Li S. Je Y. H. 2017 RNA interference of E75 nuclear receptor gene suppresses transmission of rice stripe virus in Laodelphax striatellus J. Asia-Pac. Entomol. 20 1140 1144 10.1016/j.aspen.2017.08.011 

  8. Feyereisen R. 2015 Insect P450 inhibitors and insecticides: challenges and opportunities Pest Manag. Sci. 71 793 800 10.1002/ps.3895 25404103 

  9. Galiana-Arnoux D. Dostert C. Schneemann A. Hoffmann J. A. Imler J.-L. 2006 Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila Nat. Immunol. 7 590 597 10.1038/ni1335 16554838 

  10. Grabherr M. G. Haas B. J. Yassour M. Levin J. Z. Thompson D. A. Amit I. Adiconis X. Fan L. Raychowdhury R. Zeng Q. Chen Z. Mauceli E. Hacohen N. Gnirke A. Rhind N. di Palma F. Birren B. W. Nusbaum C. Lindblad-Toh K. Friedman N. Regev A. 2011 Fulllength transcriptome assembly from RNA-Seq data without a reference genome Nat. Biotechnol. 29 644 652 10.1038/nbt.1883 21572440 

  11. Hamamatsu C. Toriyama S. Toyoda T. Ishihama A. 1993 Ambisense coding strategy of the rice stripe virus genome: in vitro translation studies J. Gen. Virol. 74 1125 1131 10.1099/0022-1317-74-6-1125 8509762 

  12. Hibino H. 1996 Biology and epidemiology of rice viruses Annu. Rev. Phytopathol. 34 249 274 10.1146/annurev.phyto.34.1.249 15012543 

  13. Hogenhout S. A. Ammar E.-D. Whitfield A. E. Redinbaugh M. G. 2008 Insect vector interactions with persistently transmitted viruses Annu. Rev. Phytopathol. 46 327 359 10.1146/annurev.phyto.022508.092135 18680428 

  14. Ishikawa K. Omura T. Hibino H. 1989 Morphological characteristics of rice stripe virus J. Gen. Virol. 70 3465 3468 10.1099/0022-1317-70-12-3465 

  15. Jaattela M. Tschopp J. 2003 Caspase-independent cell death in T lymphocytes Nat. Immunol. 4 416 423 10.1038/ni0503-416 12719731 

  16. Kanakala S. Ghanim M. 2016 RNA interference in insect vectors for plant viruses Viruses 8 329 10.3390/v8120329 27973446 

  17. Karatolos N. Williamson M. S. Denholm I. Gorman K. Ffrench-Constant R. H. Bass C. 2012 Over-expression of a cytochrome P450 is associated with resistance to pyriproxyfen in the greenhouse whitefly Trialeurodes vaporariorum PLoS ONE 7 e31077 10.1371/journal.pone.0031077 22347432 

  18. Lamb D. C. Lei L. Warrilow A. G. S. Lepesheva G. I. Mullins J. G. L. Waterman M. R. Kelly S. L. 2009 The first virally encoded cytochrome p450 J. Virol. 83 8266 8269 10.1128/JVI.00289-09 19515774 

  19. Langmead B. Salzberg S. L. 2012 Fast gapped-read alignment with Bowtie 2 Nat. Methods 9 357 359 10.1038/nmeth.1923 22388286 

  20. Lee J. H. Choi J. Y. Tao X. Y. Kim J. S. Kim W. Je Y. H. 2013 Transcriptome analysis of the small brown planthopper, Laodelphax striatellus carrying Rice stripe virus Plant Pathol. J. 29 330 337 10.5423/PPJ.NT.01.2013.0001 25288960 

  21. Lee K. S. Kim S. R. Park N. S. Kim I. Kang P. D. Sohn B. H. Choi K. H. Kang S. W. Je Y. H. Lee S. M. Sohn H. D. Jin B. R. 2005 Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection Insect Biochem. Mol. Biol. 35 73 84 10.1016/j.ibmb.2004.09.008 15607657 

  22. Liu B. Qin F. Liu W. Wang X. 2016 Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus Sci. Rep. 6 27216 10.1038/srep27216 27277140 

  23. Liu W. Gray S. Huo Y. Li L. Wei T. Wang X. 2015 Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein Mol. Cell. Proteomics 14 2229 2242 10.1074/mcp.M114.046763 26091699 

  24. Mortazavi A. Williams B. A. McCue K. Schaeffer L. Wold B. 2008 Mapping and quantifying mammalian transcriptomes by RNA-Seq Nat. Methods 5 621 628 10.1038/nmeth.1226 18516045 

  25. Ng J. C. Falk B. W. 2006 Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses Annu. Rev. Phytopathol. 44 183 212 10.1146/annurev.phyto.44.070505.143325 16602948 

  26. Patel R. K. Jain M. 2012 NGS QC Toolkit: a toolkit for quality control of next generation sequencing data PLoS One 7 e30619 10.1371/journal.pone.0030619 22312429 

  27. Pinheiro P. V. Ghanim M. Alexander M. Rebelo A. R. Santos R. S. Orsburn B. C. Gray S. Cilia M. 2017 Host plants indirectly influence plant virus transmission by altering gut cysteine protease activity of aphid vectors Mol. Cell. Proteomics 16(4 Suppl 1) S230 S243 10.1074/mcp.M116.063495 27932519 

  28. Premzl A. Turk V. Kos J. 2006 Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro J. Cell. Biochem. 97 1230 1240 10.1002/jcb.20720 16315320 

  29. Roberts A. Pachter L. 2013 Streaming fragment assignment for real-time analysis of sequencing experiments Nat. Methods 10 71 73 10.1038/nmeth.2251 23160280 

  30. Shiba H. Uchida D. Kobayashi H. Natori M. 2001 Involvement of cathepsin B- and L-like proteinases in silk gland histolysis during metamorphosis of Bombyx mori Arch. Biochem. Biophys. 390 28 34 10.1006/abbi.2001.2343 11368511 

  31. Sim S. Ramirez J. L. Dimopoulos G. 2012 Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior PLoS Pathog. 8 e1002631 10.1371/journal.ppat.1002631 22479185 

  32. Storr S. J. Woolston C. M. Zhang Y. Martin S. G. 2013 Redox environment, free radical, and oxidative DNA damage Antioxid. Redox Signal. 18 2399 2408 10.1089/ars.2012.4920 23249296 

  33. Stram Y. Kuzntzova L. 2006 Inhibition of viruses by RNA interference Virus Genes 32 299 306 10.1007/s11262-005-6914-0 16732482 

  34. Toriyama S. 1986 Rice stripe virus: prototype of a new group of viruses that replicate in plants and insects Microbiol. Sci. 3 347 351 2856619 

  35. Van Rij R. P. Saleh M.-C. Berry B. Foo C. Houk A. Antoniewski C. Andino R. 2006 The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster Genes Dev. 20 2985 2995 10.1101/gad.1482006 17079687 

  36. Wang X.-H. Aliyari R. Li W.-X. Li H.-W. Kim K. Carthew R. Atkinson P. Ding S.-W. 2006 RNA interference directs innate immunity against viruses in adult Drosophila Science 312 452 454 10.1126/science.1125694 16556799 

  37. Wei T.-Y. Yang J.-G. Liao F.-L. Gao F.-L. Lu L.-M. Zhang X.-T. Li F. Wu Z.-J. Lin Q.-Y. Xie L.-H. Lin H.-X. 2009 Genetic diversity and population structure of rice stripe virus in China J. Gen. Virol. 90 1025 1034 10.1099/vir.0.006858-0 19264655 

  38. Wu W. Zheng L. Chen H. Jia D. Li F. Wei T. 2014 Nonstructural protein NS4 of Rice Stripe Virus plays a critical role in viral spread in the body of vector insects PLoS ONE 9 e88636 10.1371/journal.pone.0088636 24523924 

  39. Xu Y. Huang L. Fu S. Wu J. Zhou X. 2012 Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus PLoS ONE 7 e46238 10.1371/journal.pone.0046238 23029445 

  40. Yang M. Xu Z. Zhao W. Liu Q. Li Q. Lu L. Liu R. Zhang X. Cui F. 2018 Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus BMC Plant Biol. 18 219 10.1186/s12870-018-1438-7 30286719 

  41. Yang X.-M. Hou L.-J. Dong D.-J. Shao H.-L. Wang J.-X. Zhao X.-F. 2006 Cathepsin B-like proteinase is involved in the decomposition of the adult fat body of Helicoverpa armigera Arch. Insect Biochem. Physiol. 62 1 10 10.1002/arch.20115 16612807 

  42. Zhao X.-F. An X.-M. Wang J.-X. Dong D.-J. Du X.-J. Sueda S. Kondo H. 2005 Expression of the Helicoverpa cathepsin b-like proteinase during embryonic development Arch. Insect Biochem. Physiol. 58 39 46 10.1002/arch.20030 15599933 

  43. Zhao W. Lu L. Yang P. Cui N. Kang L. Cui F. 2016a Organ-specific transcriptome response of the small brown planthopper toward rice stripe virus Insect Biochem. Mol. Biol. 70 60 72 10.1016/j.ibmb.2015.11.009 26678499 

  44. Zhao W. Yang P. Kang L. Cui F. 2016b Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants New Phytol. 210 196 207 10.1111/nph.13747 26585422 

  45. Zuzarte-Luis V. Montero J. A. Kawakami Y. Izpisua-Belmonte J. C. Hurle J. M. 2007 Lysosomal cathepsins in embryonic programmed cell death Dev. Biol. 301 205 217 10.1016/j.ydbio.2006.08.008 16987511 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로