$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

나노구조물의 자동화 시퀀스 설계 및 거동 예측 시뮬레이션
Automated Sequence Design and Simulation of DNA Nanostructures 원문보기

전산 구조 공학 = Journal of the Computational Structural Engineering Institute of Korea, v.33 no.2, 2020년, pp.28 - 34  

전형민 (전북대학교 기계시스템공학부)

초록이 없습니다.

참고문헌 (37)

  1. N. C. Seeman, Nucleic acid junctions and lattices. Journal of Theoretical Biology. 99, 237-247 (1982). 

  2. J. Chen, N. C. Seeman, Synthesis from DNA of a molecule with the connectivity of a cube. Nature. 350, 631-633 (1991). 

  3. E. Winfree, F. Liu, L. A. Wenzler, N. C. Seeman, Design and self-assembly of two-dimensional DNA crystals. Nature. 394, 539-544 (1998). 

  4. P. W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns. Nature. 440, 297-302 (2006). 

  5. S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, W. M. Shih, Self-assembly of DNA into nanoscale three-dimensional shapes. Nature. 459, 414-418 (2009). 

  6. H. Dietz, S. M. Douglas, W. M. Shih, Folding DNA into twisted and curved nanoscale shapes. Science. 325, 725-730 (2009). 

  7. F. Zhang, S. Jiang, S. Wu, Y. Li, C. Mao, Y. Liu, H. Yan, Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnology. 10, 779-784 (2015). 

  8. G. Tikhomirov, P. Petersen, L. Qian, Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature. 552, 67-71 (2017). 

  9. K. F. Wagenbauer, C. Sigl, H. Dietz, Gigadalton-scale shape-programmable DNA assemblies. Nature. 552, 78-83 (2017). 

  10. L, L, Ong, N. Hanikel, O. K, Yaghi, C. Grun, M. T. Strauss, P. Bron, J. Lai-Kee-Him, F. Schueder, B. Wang, P. Wang, J. Y. Kishi, C. Myhrvold, A. Zhu, R. Jungmann, G. Bellot, Y. Ke, P. Yin, Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature. 552, 72-77 (2017). 

  11. H. T. Maune, S. Han, R. D. Barish, M. Bockrath, W. A. G. Iii, P. W. K. Rothemund, E. Winfree, Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature Nanotechnology. 5, 61-66 (2010). 

  12. M. Pilo-Pais, S. Goldberg, E. Samano, T. H. LaBean, G. Finkelstein, Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett. 11, 3489-3492 (2011). 

  13. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, T. H. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science. 301, 1882-1884 (2003). 

  14. W. Sun, E. Boulais, Y. Hakobyan, W. L. Wang, A. Guan, M. Bathe, P. Yin, Casting inorganic structures with DNA molds. Science. 346, 1258361 (2014). 

  15. A. Shaw, V. Lundin, E. Petrova, F. Fordos, E. Benson, A. Al-Amin, A. Herland, A. Blokzijl, B. Hogberg, A. I. Teixeira, Spatial control of membrane receptor function using ligand nanocalipers. Nature Methods. 11, 841-846 (2014). 

  16. J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan, Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science. 323, 112-116 (2009). 

  17. Z. Jin, W. Sun, Y. Ke, C.-J. Shih, G. L. C. Paulus, Q. H. Wang, B. Mu, P. Yin, M. S. Strano, Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nature Communications, 4, 1663 (2013). 

  18. S. M. Douglas, I. Bachelet, G. M. Church, A logic-gated nanorobot for targeted transport of molecular payloads. Science. 335, 831-834 (2012). 

  19. S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song, J. Wang, Y. Zou, G. J. Anderson, J.-Y. Han, Y. Chang, Y. Liu, C. Zhang, L. Chen, G. Zhou, G. Nie,H. Yan, B. Ding, Y. Zhao, A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnology. 36, 258-264 (2018). 

  20. E. Kopperger, J. List, S. Madhira, F. Rothfischer, D. C. Lamb, F. C. Simmel, A self-assembled nanoscale robotic arm controlled by electric fields. Science. 359, 296-301 (2018). 

  21. G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, P. Tinnefeld, Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano. 6, 3189-3195 (2012). 

  22. Q. Jiang, C. Song, J. Nangreave, X. Liu, L. Lin, D. Qiu, Z.-G. Wang, G. Zou, X. Liang, H. Yan, B. Ding, DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396-13403 (2012). 

  23. S. D. Perrault, W. M. Shih, Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability. ACS Nano. 8, 5132-5140 (2014). 

  24. E. Benson, A, Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen, B. Hogberg, DNA rendering of polyhedral meshes at the nanoscale. Nature. 523, 441-444 (2015). 

  25. E. Benson, A. Mohammed, A. Bosco, A. I. Teixeira, P. Orponen, B. Hogberg, Computer-aided production of scaffolded DNA nanostructures from flat sheet meshes. Angewandte Chemie International Edition. 55, 8869-8872 (2016). 

  26. R. Veneziano, S. Ratanalert, K. Zhang, F. Zhang, H. Yan, W. Chiu, M. Bathe, Designer nanoscale DNA assemblies programmed from the top down. Science. 352, 1534-1534 (2016). 

  27. H. Jun, F. Zhang, T. Shepherd, S. Ratanalert, X. Qi, H. Yan, M. Bathe, Autonomously designed free-form 2D DNA origami. Science Advances. 5, eaav0655 (2019). 

  28. H. Jun, T. R. Shepherd, K. Zhang, W. P, Bricker, S. Li, W, Chiu, M. Bathe, Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. ACS Nano. 13, 2083-2093 (2019). 

  29. H. Jun, X. Wang, W. P, Bricker, M. Bathe, Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nature Communications. 10, 1-9 (2019). 

  30. C. E. Castro, F. Kilchherr, D.-N. Kim, E. L. Shiao, T. Wauer, P. Wortmann, M. Bathe, H. Dietz, A primer to scaffolded DNA origami. Nature Methods. 8, 221-229 (2011). 

  31. D. Wu, N. Sinha, J. Lee, B. P. Sutherland, N. I. Halaszynski, Y. Tian, J. Caplan, H. V. Zhang, J. G. Saven, C. J. Kloxin, D. J. Pochan, Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature. 574, 658-662 (2019). 

  32. S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vazquez, G. M. Church, W. M. Shih, Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001-5006 (2009). 

  33. H. Jun, X. Wang, W. P. Bricker, S. Jackson, M. Bathe, bioRxiv, in press, doi:10.1101/2020.02.09.940320. 

  34. O. Henrich, Y. A. Gutierrez Fosado, T. Curk, T. E. Ouldridge, Coarse-grained simulation of DNA using LAMMPS: An implementation of the oxDNA model and its applications. Eur. Phys. J. E. 41, 57 (2018). 

  35. T. E. Ouldridge, A. A. Louis, J. P. K. Doye, Structural, mechanical, and thermodynamic properties of a coarsegrained DNA model. J. Chem. Phys. 134, 085101 (2011). 

  36. A. Suma, E. Poppleton, M. Matthies, P. Sulc, F. Romano, A. A. Louis, J. P. K. Doye, C. Micheletti, L. Rovigatti, TacoxDNA: A user-friendly web server for simulations of complex DNA structures, from single strands to origami. Journal of Computational Chemistry. 40, 2586-2595 (2019). 

  37. K. Pan, D.-N. Kim, F. Zhang, M. R. Adendorff, H. Yan, M. Bathe, Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nature Communications. 5, 5578 (2014). 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로