$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

약물 전달 시스템 적용을 위한 셀룰로오스 나노크리스탈(CNCs) 강화 Poly(vinyl alcohol) 기반 하이드로겔의 제조 및 특성
Preparation and Characterization of Cellulose Nanocrystals Reinforced Poly (vinyl alcohol) Based Hydrogels for Drug Delivery System 원문보기

목재공학 = Journal of the Korean wood science and technology, v.48 no.4, 2020년, pp.431 - 449  

CHO, Hyejung (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ,  YOO, Won-Jae (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ,  AHN, Jinsoo (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science) ,  CHUN, Sang-Jin (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science) ,  LEE, Sun-Young (Forest Biomaterials Research Center, National Institute of Forest Science) ,  GWON, Jaegyoung (Division of Wood Chemistry, Department of forest Products, National Institute of Forest Science)

초록
AI-Helper 아이콘AI-Helper

기존 연질 구조의 하이드로겔은 낮은 기계적 강도로 인하여 생의학 분야에서 응용이 제한된다. 본 연구에서는 이러한 단점을 극복하기 위해서 폴리비닐알코올(PVA: poly(vinyl alcohol))기반 하이드로겔에 셀룰로오스 나노크리스탈(CNCs)을 첨가하여 CNCs가 기계적 특성 및 약물전달 효율에 미치는 영향을 확인하였다. 제조된 하이드로겔은 FT-IR 분석으로 아세탈알데히드 결합으로 가교결합된 망상구조(semi-IPN: semi-interpenetrating polymer network)로 합성된 것이 확인되었다. CNCs 함량이 증가될수록 수분 흡수 및 팽윤도가 감소했으며, 점탄성은 증가하였다. 또한 CNCs의 첨가는 약물 로딩량의 증가와 약물 방출량의 지속성을 향상시켰다. 이러한 결과는 CNCs를 하이드로겔에 첨가하는 것이 하이드로겔의 약물전달 효율성 및 기계적 특성을 개선시키는 좋은 대안이 될 수 있음을 보여주었다.

Abstract AI-Helper 아이콘AI-Helper

Structural property of most hydrogels is soft, resulting in low mechanical performance that limits their usage in the biomedical applications. For overcoming the drawback, cellulose nanocrystals (CNCs) were adopted in this study. Effects of CNCs on characteristics and drug delivery performance of po...

주제어

표/그림 (12)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • CNCs-based PVA hydrogels were prepared, and its physical, chemical and mechanical properties were investigated. Also, salicylic acid as a drug model was applied to investigate the adsorption and release properties of hydrophobic drugs, and the interaction between the drug and the hydrogels was evaluated using various dynamic models.
  • In this study, CNC was applied to the PVA hydrogel system in which glutaraldehyde (GA) was used as a crosslinking agent, and the adsorption and release behavior of the drug was examined after salicylic acid (SA) was introduced as a drug model. To evaluate the structural properties of the hydrogel, fourier transform infrared (FT-IR) spectroscopy, water content, swelling ratio, specific surface area, scanning electron microscopy (SEM) and viscoelastic properties were analyzed.
  • To check swelling properties, the hydrogels dried for 12 hours in a chamber at 70 ℃ were immersed in distilled water at 37 ℃. The purpose was to check the swelling ratio according to the weight by time compared to the initial weight. The weight was measured three times to be determined in the error range of ± (0.
  • To evaluate mechanical properties of hydrogels by CNCs content, CNCs-based PVA hydrogels’ storage modulus and loss modulus were analyzed using parallel and peltier plates with DHR3 rheometer (TA instruments, US).
  • In this study, CNC was applied to the PVA hydrogel system in which glutaraldehyde (GA) was used as a crosslinking agent, and the adsorption and release behavior of the drug was examined after salicylic acid (SA) was introduced as a drug model. To evaluate the structural properties of the hydrogel, fourier transform infrared (FT-IR) spectroscopy, water content, swelling ratio, specific surface area, scanning electron microscopy (SEM) and viscoelastic properties were analyzed. In addition, Langmuir, Freundlich adsorption model was applied to see interaction between hydrogels and the drug, and Lagergren's pseudo 1st order model and Ho's pseudo 2ndorder model were applied for the release behavior.

대상 데이터

  • 1098, Sigma-aldrich), having a molecular weight of 61,000 Da, and glutaraldehyde (GA, Sigma-aldrich) was used as a crosslinking agent. The CNCs used in this study are made from cellulose powder (KC Flock W-50, average size: 45 ㎛) purchased from Nippon Paper Chemicals Co., Ltd. (Tokyo, Japan). And then, by the same method as in the previous study (Gwon et al.

이론/모형

  • In order to obtain process parameters for applying the drug-loaded hydrogels to the drug system by the impregnation method, the appearance of the hydrogel interface and drug loading were predicted using an adsorption isotherm model. The interfacial reaction between the hydrogels and the drug was observed by using Langmuir isotherm, which is composed of a monolayer on a single interface and mainly shown in chemical bonds, and Freundlich isotherm, where a drug combines on a heterogeneous interface with multilayers by physical adsorption (Cho et.
  • In this study, the drug loading performance was investigated using Langmuir isotherm and Freundlich isotherm as adsorption isotherm models. And the results are shown in Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. An, Q., Beh, C., Xiao, H. 2014. Preparation and characterization of thermo-sensitive poly(vinyl alcohol)-based hydrogel as drug carrier. Journal of Applied Polymer Science 131(1): 39720. 

  2. Cho, H., Baek, K., Jeon, J., Park, S., Suh, D., Park, Y. 2013. Removal characteristics of copper by marine macro-algae-derived chars. Chemical Engineering Journal 217: 205-211. 

  3. Gao, Y., Zhu, W., Liu, J., Di, D., Chang, D., Jiang, T., Wang, S. 2015. A geometric pore adsorption model for predicting the drug loading capacity of insoluble drugs in mesoporous carbon. International Journal of Pharmaceutics 485(1): 25-30. 

  4. Gwon, J., Cho, H., Chun, S., Lee, S., Wu, Q., Lee, S. 2016. Physiochemical, optical and mechanical properties of poly(lactic acid) nanocomposites filled with toluene diisocyanate grafted cellulose nanocrystals. RSC Advances 6: 9438-9445. 

  5. Gwon, J., Cho, H., Lee, D., Choi, D., Lee, S., Wu, Q., Lee, S. 2018. Physicochemical and mechanical properties of polypropylene-cellulose nanocrystal nanocomposites: Effects of manufacturing process and chemical grafting. BioResources 13(1): 1619-1636. 

  6. Gwon, J., Lee, D., Cho, H., Lee, S. 2018. Preparation and characteristics of cellulose acetate based nanocomposites reinforced with cellulose nanocrystals (CNCs). Journal of the Korean Wood Science and Technology 46(5): 565-576. 

  7. Hendrawan, H., Khoerunnisa, F., Sonjaya, Y., Putri, A.D. 2019. Poly (vinyl alcohol)/glutaraldehyde/ Premna oblongifolia Merr extract hydrogel for controlled-release and water absorption application. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK. 012048. 

  8. Hoare, T.R., Kohane, D.S. 2008. Hydrogels in drug delivery: Progress and challenges. Polymer 49(8): 1993-2007. 

  9. Hyon, S., Cha, W., Ikada, Y. 1989. Preparation of transparent poly(vinyl alcohol) hydrogel. Polymer Bulletin 22(2): 119-122. 

  10. Khanjanzadeh, H., Park, B. 2020. Characterization of carboxylated cellulose nanocrystals from recycled fiberboard fibers using ammonium persulfate oxidation. Journal of the Korean Wood Science and Technology 48(2): 231-244. 

  11. Kim, H., Jegal, J., Kim, J., Lee, K., Lee, Y. 2003. Enantioselective permeation of ${\alpha}$ -amino acid optical isomers through crosslinked sodium alginate membranes. Journal of Applied Polymer Science 89(11): 3046-3051. 

  12. Ladet, S., David, L., Domard, A. 2008. Multi-membrane hydrogels. Nature Letters 452: 76-79. 

  13. Li, J., Mooney, D.J. 2016. Designing hydrogels for controlled drug delivery. Nature Reviews Materials 1: 16071. 

  14. Lin, C.C., Metters, A.T. 2006. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews 58(12): 1379-1408. 

  15. Mansur, H.S., Sadahira, C.M., Souza, A.N., Mansur, A.A. 2008. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering C 28: 539-548. 

  16. Marin, E., Rojas, J. 2015. Preparation and characterization of crosslinked poly (VINYL) alcohol films with waterproof properties. International Journal of Pharmacy and Pharmaceutical Sciences 7(3): 242-248. 

  17. Masruchin, N., Park, B.D., Causin, V. 2015. Influence of sonication treatment on supramolecular cellulose microfibril-based hydrogels induced by ionic interaction. Journal of Industrial and Engineering Chemistry 29(25): 265-272. 

  18. McKenzie, M., Betts, D., Suh, A., Bui, K., Kim, L.D., Cho, H. 2015. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 20(11): 20397-20408. 

  19. Pal, K., Banthia, A.K., Majumdar D.K. 2007. Preparation and characterization of polyvinyl alcoholgelatin hydrogel membranes for biomedical applications. An Official Journal of the American Association of Pharmaceutical Scientists 8(1): E142-E146. 

  20. Reis, E.F.D., Campos, F.S., Lage, A.P., Leite, R.C., Heneine, L.G., Vasconcelos, W.L., Mansur, H.S. 2006. Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research 9(2): 185-191. 

  21. Rivas, C.J.M., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q. A., Rodriguez, S.A.G., Roman, R.A., Fessi, H., Elaissari, A. 2017. Nanoprecipitation process: From encapsulation to drug delivery. International Journal of Pharmaceutics 532(1): 66-81. 

  22. Tanpichai, S., Oksman, K. 2016. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Composites Part A: Applied Science and Manufacturing 88: 226-233. 

  23. Thangprasert, A., Tansakul, C., Thuaksubun, N., Meesane, J. 2019. Mimicked hybrid hydrogel based on gelatin/PVA for tissue engineering in subchondral bone interface for osteoarthritis surgery. Materials and Design, 183: 108113. 

  24. Mezger, T. 2015. Applied rheology: With Joe flow on rheology road. Anton Paar. 

  25. Tilak, A., Thakur, R.N., Sharma, R., Verma, M., Gupta, A.K. 2016. Study of adsorption of drug and calculation of Freundlich adsorption isotherm. International Journal of Pharmaceutical and Biological Science Archive 4(4): 01-05. 

  26. Valle, L.J.D,. Diaz, A., Puiggali, J. 2017. Hydrogels for biomedical applications: cellulose, chitosan, and protein/peptide derivatives. Gels 3(3): 27. 

  27. Wang, Q., Mynar, J.L., Yoshida, M., Lee, E., Lee, M., Okuro, K., Kinbara, K., Aida. T. 21, January 2010. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature Letters 463: 339-343. 

  28. Xiao, C., Zhou, G. 2003. Synthesis and properties of degradable poly(vinyl alcohol) hydrogel. Polymer Degradation and Stability 81(2): 297-301. 

  29. Yeom, C., Lee, K. 1996. Pervaporation separation of water-acetic acid mixtures through poly (vinyl alcohol) membranes crosslinked with glutaraldehyde. Journal of Membrane Science 109(2): 257-265. 

  30. Yue, Y., Han, J., Han, G., French, A.D., Qi, Y., Wu, Q. 2016. Cellulose nanofibers reinforced sodium alginate-polyvinyl alcohol hydrogels: Core-shell structure formation and property characterization. Carbohydrate Polymers 147: 155-164. 

  31. Zaini, L., Febrianto, F., Wistara, I., Marwanto, N., Maulana, M., Lee, S., Kim, N., 2019. Effect of ammonium persulfate concentration on characteristics of cellulose nanocrystals from oil palm frond. Journal of the Korean Wood Science and Technology 47(5): 597-606. 

  32. Zawko, S.A., Truong, Q., Schmidt, C.E. 2008. Drugbinding hydrogels of hyaluronic acid functionalized with ${\beta}$ -cyclodextrin. Journal of Biomedical Materials Research Part A 87(4): 1044-1052. 

  33. Zhou, Y., Zhang, L., Cheng, Z. 2015. Removal of organic pollutants from aqueous solution using agricultural wastes: A review. Journal of Molecular Liquids 212: 739-762. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로