$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

압전-마찰전기 복합 소재 기반의 고출력 에너지 하베스팅 기술 개발 리뷰
Review on the Recent Advances in Composite Based Highoutput Piezo-Triboelectric Energy Harvesters 원문보기

세라미스트 = Ceramist, v.23 no.1, 2020년, pp.54 - 88  

(성균관대학교 물리화학협동과정) ,  박현제 (성균관대학교 물리학과) ,  손민균 (성균관대학교 물리학과) ,  이태형 (성균관대학교 물리학과) ,  강대준 (성균관대학교 물리학과)

Abstract AI-Helper 아이콘AI-Helper

Global effort has resulted in tremendous progress with energy harvesters that extract mechanical energy from ambient sources, convert it to electrical energy, and use it for systems such as wrist watches, mobile electronic devices, wireless sensor nodes, health monitoring, and biosensors. However, h...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
마찰전기 에너지 하베스터에서 이용하는 마찰대전의 현상은 무엇인가? 마찰전기 에너지 하베스터는 마찰대전(triboelectrification)과 정전기적 유도 메커니즘으로 생성되는 전기적 전하들을 이용한다.20-22) 마찰대전은 서로 다른 두 물질이 접촉하고 분리될 때 전하의 이동에 의해 전기적으로 대전되는 현상을 일컫는다. 마찰에 의해 표면 상에 서로 반대 극성의 전하가 생기면, 대전된 물질의 움직임에 따라 물질 반대편의 양전하와 음전하가 각각 재분포되어 정전기적 평형을 유지한다.
에너지 하베스터란 무엇인가? 2006년 산화아연 나노와이어(ZnO nanowire)의 압전 효과(piezoelectric effect)를 이용한 첫번째 에너지 하베스터가 개발된 이후로6), 압전 에너지 하베스터 (piezoelectric energy harvesters)7-9), 열전기 에너지 하베스터(pyroelectric energy harvesters)10-11), 그리고 마찰전기 에너지 하베스터(triboelectric energy harvesters)12-14) 등과 같은 다양한 유형의 에너지 하베스터들이 연구되었다. 에너지 하베스터는 일상이나 자연에서 버려지는 기계적, 열적15), 화학적16), 그리고 태양 에너지5),15) 등과 같은 에너지원을 특정 에너지 수확 메커니즘에 입각해 이용가능한 전기 에너지로 전환시키는 소자를 일컫는다. 다양한 에너지원이 존재하나 이중에서 기계적 에너지는 기후에 독립적이며, 신체 활동, 외부 진동, 그리고 흐르는 물 등과 같은 자연 현상으로부터 쉽게 관측되나, 쉽게 다른 에너지로 전환되어 사라진다.
에너지 하베스터 소자의 응용 분야는 무엇인가? 이러한 맥락에서 마이크로/나노 수준의 재료 공학기술의 발전은 주변의 낭비되는 에너지를 수확하는(harvesting) ‘에너지 하베스팅 기술(energy harvesting technology)’을 발전시켰다. 이러한 에너지 하베스터 소자는 손쉬운 작동, 유연소재로의 적용 가능성, 소자 설계상의 유연성, 그리고 소형 전자기기 작동에 적합한 출력 성능 등을 근거로 여러 휴대용 착복가능한(wearable) 전자기기로의 응용이 가능하며, 더 나아가 각종 소재나 신체와의 통합을 통해 에너지 하베스터소자는 자가발전 심박조율기, 보청기, 인체 삽입형 소자, 건축 구조물 진단용 센서 등과 같은 스마트 생체적합(biocompatible) 소자로의 기술적 응용을 가능하게 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (155)

  1. B. W. An, J. H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, and E. Cho, "Smart Sensor Systems for Wearable Electronic Devices," Polymers 9, 303 (2017). 

  2. A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. Malhotra, and S. Bhansali, "Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring," Chem. Rev. 115, 4571-4606 (2015) 

  3. L. Y. Chen, B. C.-K. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H.-S. P. Wong, M. V. McConnell, and Z. Bao, "Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care," Nat. Commun. 5, 5028 (2014). 

  4. M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, "Biomedical applications of untethered mobile milli/microrobots," Proc. IEEE. 103, 205-224 (2015). 

  5. Z. L. Wang and W. Wu, "Nanotechnologyenabled energy harvesting for self-powered micro-/nanosystems," Angew. Chem. 51, 11700-11721 (2012) 

  6. Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science. 312, 242-246 (2006) 

  7. V. Nguyen, R. Zhu, and R. Yang, "Environmental effects on nanogenerators," Nano Energy. 14, 49-61 (2015). 

  8. K. Y. Lee, D. Kim, J. H. Lee, T. Y. Kim, M. K. Gupta, and S. W. Kim, "Unidirectional High-Power Generation via Stress-Induced Dipole Alignment from ZnSnO3 Nanocubes/Polymer Hybrid Piezoelectric Nanogenerator," Adv. Func. Mater. 24, 37-43 (2014) 

  9. J.-H. Lee, K. Y. Lee, B. Kumar, N. T. Tien, N.-E. Lee, and S.-W. Kim, "Highly sensitive stretchable transparent piezoelectric nanogenerators," Energy Environ. Sci. 6, 169-175 (2013) 

  10. J. H. Lee, H. Ryu, T. Y. Kim, S. S. Kwak, H. J. Yoon, T. H. Kim, W. Seung, and S. W. Kim, "Thermally Induced Strain-Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators," Adv. Energy. Mater. 5 (2015) 

  11. J. H. Lee, K. Y. Lee, M. K. Gupta, T. Y. Kim, D. Y. Lee, J. Oh, C. Ryu, W. J. Yoo, C. Y. Kang, and S. J. Yoon, "Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator," Adv. Mater. 26, 765-769 (2014) 

  12. K. Y. Lee, S. K. Kim, J. H. Lee, D. Seol, M. K. Gupta, Y. Kim, and S. W. Kim, "Controllable charge transfer by ferroelectric polarization mediated triboelectricity," Adv. Func. Mater. 26, 3067-3073 (2016) 

  13. J. H. Lee, R. Hinchet, S. K. Kim, S. Kim, and S.-W. Kim, "Shape memory polymer-based self-healing triboelectric nanogenerator," Energy Environ. Sci. 8, 3605-3613 (2015) 

  14. W. Seung, M. K. Gupta, K. Y. Lee, K.-S. Shin, J.-H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim, and S.-W. Kim, "Nanopatterned textile-based wearable triboelectric nanogenerator," ACS Nano. 9, 3501-3509 (2015) 

  15. X. Yang and W. A. Daoud, "Triboelectric and Piezoelectric Effects in a Combined Tribo-Piezoelectric Nanogenerator Based on an Interfacial ZnO Nanostructure," Adv. Func. Mater. 26, 8194-8201 (2016) 

  16. Yang, Y., et al., Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7, 785-790 (2012). 

  17. F. R. Fan, W. Tang, and Z. L. Wang, "Flexible nanogenerators for energy harvesting and self-powered electronics," Adv. Mater. 28, 4283-4305 (2016) 

  18. J.-H. Lee, J. Kim, T. Y. Kim, M. S. Al Hossain, S.-W. Kim, and J. H. Kim, "All-inone energy harvesting and storage devices," J. Mater. Chem. A. 4, 7983-7999 (2016) 

  19. Q. Zheng, B. Shi, Z. Li, and Z. L. Wang, "Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems," Adv. Sci. 4, 1700029 (2017). 

  20. Z. L. Wang, G. Zhu, Y. Yang, S. Wang, and C. Pan, "Progress in nanogenerators for portable electronics," Materials Today 15, 532-543 (2012) 

  21. J. Lowell and A. Rose-Innes, "Contact electrification," Adv. Phys. 29, 947-1023 (1980) 

  22. G. Castle, "Contact charging between insulators," J. Electrostat. 40, 13-20 (1997). 

  23. R. Yang, Y. Qin, L. Dai, and Z. L. Wang, "Power generation with laterally packaged piezoelectric fine wires," Nat. Nanotechnol. 4, 34 (2009) 

  24. X. Wang, B. Yang, J. Liu, Y. Zhu, C. Yang, and Q. He, "A flexible triboelectricpiezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices," Sci. Rep. 6, 36409 (2016) 

  25. S. Roundy and E. Takahashi, "A planar electromagnetic energy harvesting transducer using a multi-pole magnetic plate," Actuator A Phys. 195, 98-104 (2013) 

  26. L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, and F. Ma, "Flexible fiber nanogenerator with 209 V output voltage directly powers a lightemitting diode," Nano. lett. 13, 91-94 (2012) 

  27. G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, "Functional electrical stimulation by nanogenerator with 58 V output voltage," Nano. lett. 12, 3086-3090 (2012) 

  28. W.-S. Jung, M.-G. Kang, H. G. Moon, S.-H. Baek, S.-J. Yoon, Z.-L. Wang, S.-W. Kim, and C.-Y. Kang, "High output piezo/triboelectric hybrid generator," Sci. Rep. 5, 9309 (2015) 

  29. H. Van Ngoc and D. J. Kang, "Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes," Nanoscale 8, 5059-5066 (2016) 

  30. Y. Zi, L. Lin, J. Wang, S. Wang, J. Chen, X. Fan, P. K. Yang, F. Yi, and Z. L. Wang, "Triboelectric-Pyroelectric-Piezoelectric Hybrid Cell for High-Efficiency Energy-Harvesting and Self-Powered Sensing," Adv. Mater. 27, 2340-2347 (2015) 

  31. M. Han, X.-S. Zhang, B. Meng, W. Liu, W. Tang, X. Sun, W. Wang, and H. Zhang, "r-Shaped hybrid nanogenerator with enhanced piezoelectricity," ACS Nano. 7, 8554-8560 (2013) 

  32. X. Chen, M. Han, H. Chen, X. Cheng, Y. Song, Z. Su, Y. Jiang, and H. Zhang, "A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P (VDF-TrFE) nanofibers," Nanoscale 9, 1263-1270 (2017). 

  33. G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li, and X. Wang, "Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film," ACS Appl. Mater. Interfaces 8, 34335-34341 (2016) 

  34. C. Xu, X. Wang, and Z. L. Wang, "Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies," J. Amer. Chem. Soc. 131, 5866-5872 (2009) 

  35. P. Li, S. Gao, H. Cai, and L. Wu, "Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester," Micro. syst. Technol. 22, 727-739 (2016) 

  36. X. Wu, A. Khaligh, and Y. Xu, "Modeling, design and optimization of hybrid electromagnetic and piezoelectric MEMS energy scavengers" Paper presented in IEEE Custom Integrated Circuits Conference in San Jose, CA, USA (177-80), 2008 

  37. J. He, T. Wen, S. Qian, Z. Zhang, Z. Tian, J. Zhu, J. Mu, X. Hou, W. Geng, and J. Cho, "Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system," Nano Energy. 43, 326-339 (2017). 

  38. B. P. Nabar, Z. Celik-Butler, and D. P. Butler, "Piezoelectric ZnO nanorod carpet as a NEMS vibrational energy harvester," Nano Energy. 10, 71-82 (2014). 

  39. H. Liu, C. J. Tay, C. Quan, T. Kobayashi, and C. Lee, "Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power," J. Micro Electromech. S. 20, 1131-1142 (2011) 

  40. B. Yang, C. Lee, R. K. Kotlanka, J. Xie, and S. P. Lim, "A MEMS rotary comb mechanism for harvesting the kinetic energy of planar vibrations," J. Micromech. Microeng. 20, 065017 (2010) 

  41. W. Ma, R. Zhu, L. Rufer, Y. Zohar, and M. Wong, "An integrated floating-electrode electric microgenerator," J. Micro Electro Mech. Syst. 16, 29-37 (2007) 

  42. Q. Yuan, X. Sun, D.-M. Fang, and H. Zhang, Design and microfabrication of integrated magnetic MEMS energy harvester for low frequency application, Paper presented in 16th International Conference on Solid-State Sensors, Actuators and Microsystems in Bijing China, IEEE 2, 1855-58 (2011) 

  43. T. Galchev, H. Kim, and K. Najafi, "Micro power generator for harvesting low-frequency and nonperiodic vibrations," J. Micro Electro Mech. Syst. 20, 852-866 (2011) 

  44. S. P. Beeby, M. J. Tudor, and N. White, "Energy harvesting vibration sources for microsystems applications," Meas. Sci. Technol. 17, R175-95 (2006) 

  45. S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes," Comp. Commun. 26, 1131-1144 

  46. J. Briscoe and S. Dunn, "Piezoelectric nanogenerators-a review of nanostructured piezoelectric energy harvesters," Nano Energy. 14, 15-29 (2015) 

  47. Y. Hu and Z. L. Wang, "Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors," Nano Energy. 14, 3-14 (2015) 

  48. I. Dakua and N. Afzulpurkar, "Piezoelectric energy generation and harvesting at the nano-scale: materials and devices," Nanomater. Nanotechnol. 3, 21 (2013) 

  49. Z. Lin, J. Chen, and J. Yang, "Recent progress in triboelectric nanogenerators as a renewable and sustainable power source," J. Nanomater. (2016). 

  50. Z. L. Wang, J. Chen, and L. Lin, "Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors," Energy Environ. Sci. 8, 2250-2282 (2015) 

  51. Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, and Z. L. Wang, "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," J. Appl. Phys. 105 (11), 113707 (2009). 

  52. Z. L. Wang, "Energy Harvesting Using Piezoelectric Nanowires-A Correspondence on "Energy Harvesting Using Nanowires?" by Alexe et al," Adv. Mater. 21, 1311-1315 (2009) 

  53. Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, and S. Xu, "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezophototronics," Mater. Sci. Eng. R Rep. 70, 320-329 (2010) 

  54. K. Y. Lee, M. K. Gupta, and S.-W. Kim, "Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics," Nano Energy. 14, 139-160 (2015) 

  55. E. Nour, O. Nur, and M. Willander, "Zinc oxide piezoelectric nano-generators for low frequency applications," Semicond. Sci. Technol. 32, 064005 (2017) 

  56. K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J. L. Kang, Z. L. Wang, and K. J. Lee, "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates," Nano. Lette. 10, 4939-4943 (2010) 

  57. Z.-H. Lin, Y. Yang, J. M. Wu, Y. Liu, zF. Zhang, and Z. L. Wang, "BaTiO3 nanotubes-based flexible and transparent nanogenerators," J. Phys. Chem. Lett. 3, 3599-3604 (2012) 

  58. K. I. Park, M. Lee, Y. Liu, S. Moon, G. T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, and Z. L. Wang, "Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons," Adv. Mater. 24, 2999-3004 (2012) 

  59. S. Gupta, A. Tanwar, R. Mukhiya, and S. S. Kumar, "Design and Simulations of ZnObased Piezoelectric Energy Harvester," Paper presented in ISSS International Conference on Smart Materials, Structures and Systems in Bangalore, India, 5-7 July 2017, 

  60. Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z. L. Wang, "Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators," J. Mater. Chem. 19, 9260-9264 (2009) 

  61. Y. Qiu, H. Zhang, L. Hu, D. Yang, L. Wang, B. Wang, J. Ji, G. Liu, X. Liu, and J. Lin, "Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates," Nanoscale 4, 6568-6573 (2012) 

  62. S. Xu, B. J. Hansen, and Z. L. Wang, "Piezoelectric-nanowire-enabled power source for driving wireless microelectronics," Nat. Commun. 1, 93 (2010) 

  63. J. Kwon, W. Seung, B. K. Sharma, S.-W. Kim, and J.-H. Ahn, "A high performance PZT ribbon-based nanogenerator using graphene transparent electrodes," Energy Environ. Sci. 5, 8970-8975 (2012) 

  64. C. Dagdeviren, B. D. Yang, Y. Su, P. L. Tran, P. Joe, E. Anderson, J. Xia, V. Doraiswamy, B. Dehdashti, and X. Feng, "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm," Proc. Natl. Acad. Sci. 111, 1927-1932 (2014) 

  65. C. Chang, V. H. Tran, J. Wang, Y.-K. Fuh, and L. Lin, "Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency," Nano. Lett. 10, 726-731 (2010) 

  66. B. J. Hansen, Y. Liu, R. Yang, and Z. L. Wang, "Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy," ACS Nano. 4, 3647-3652 (2010) 

  67. L. Persano, C. Dagdeviren, Y. Su, Y. Zhang, S. Girardo, D. Pisignano, Y. Huang, and J. A. Rogers, "High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-cotrifluoroethylene)," Nat. Commun. 4, 1633 (2013). 

  68. X. Chen, H. Tian, X. Li, J. Shao, Y. Ding, N. An, and Y. Zhou, "A high performance P (VDF-TrFE) nanogenerator with selfconnected and vertically integrated fibers by patterned EHD pulling," Nanoscale 7, 11536-11544 (2015) 

  69. S. Cha, S. M. Kim, H. Kim, J. Ku, J. I. Sohn, Y. J. Park, B. G. Song, M. H. Jung, E. K. Lee, and B. L. Choi, "Porous PVDF as effective sonic wave driven nanogenerators," Nano. Lett. 11, 5142-5147 (2011) 

  70. Y. Mao, P. Zhao, G. McConohy, H. Yang, Y. Tong, and X. Wang, "Sponge-Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self-Powered Electronic Systems," Adv. Energy. Mater. 4, (2014) 

  71. B. Kumar and S.-W. Kim, "Recent advances in power generation through piezoelectric nanogenerators," J. Mater. Chem. 21, 18946-18958 (2011) 

  72. T. Bateman, "Elastic moduli of single-crystal zinc oxide," J. Appl. Phys. 33, 3309-3312 (1962). 

  73. P. Gopal and N. A. Spaldin, "Polarization, piezoelectric constants, and elastic constants of ZnO, MgO, and CdO," J. Electron Mater. 35, 538-542 (2006) 

  74. R. F. Pierret, Semiconductor device fundamentals. 2nd edn (Addison Wesley, India, 1996) pp. 470-90 

  75. W. Park, G.-C. Yi, J.-W. Kim, and S.-M. Park, "Schottky nanocontacts on ZnO nanorod arrays," Appl. Phys. Lett. 82, 4358-4360 (2003) 

  76. R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, "Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator," Nano. Lett. 9, 1201-1205 (2009) 

  77. M. Lee, J. Bae, J. Lee, C.-S. Lee, S. Hong, and Z. L. Wang, "Self-powered environmental sensor system driven by nanogenerators," Energy. Environ. Sci. 4, 3359-3363 (2011) 

  78. K. H. Kim, K. Y. Lee, J. S. Seo, B. Kumar, and S. W. Kim, "Paper-based piezoelectric nanogenerators with high thermal stability," Small. 7, 2577-2580 (2011) 

  79. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science. 294, 1313-1317 (2001) 

  80. Z. Shao, X. Zhang, X. Wang, and S. Chang, "Electrical characteristics of Pt-ZnO Schottky nano-contact," Sci China Phys Mech. 53, 64-67 (2010) 

  81. J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, "Carrier density and Schottky barrier on the performance of DC nanogenerator," Nano. Lett. 8, 328-332 (2008) 

  82. D. Davies, "Harmful effects and damage to electronics by electrostatic discharges," J. Electrostat. 16, 329-342 (1985) 

  83. F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, "Flexible triboelectric generator," Nano Energy. 1, 328-334 (2012) 

  84. P. Shaw, "Experiments on tribo-electricity. I.-The tribo-electric series," Proc. R. Soc. Lond. A. 94, 16-33 (1917) 

  85. Z. L. Wang, "Towards self-powered nanosystems: from nanogenerators to nanopiezotronics," Adv. Func. Mater. 18, 3553-3567 (2008). 

  86. L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, and Z. L. Wang, "Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy," Nano. Lett. 13, 2916-2923 (2013) 

  87. D. Kim, Y. Oh, B.-W. Hwang, S.-B. Jeon, S.-J. Park, and Y.-K. Choi, "Triboelectric nanogenerator based on the internal motion of powder with a package structure design," ACS Nano 10, 1017-1024 (2015) 

  88. B. Meng, W. Tang, Z.-h. Too, X. Zhang, M. Han, W. Liu, and H. Zhang, "A transparent single-friction-surface triboelectric generator and self-powered touch sensor," Energy Environ. Sci. 6, 3235-3240 (2013) 

  89. Wang, S., L. Lin, and Z.L. Wang, "Triboelectric nanogenerators as self-powered active sensors." Nano Energy. 11, 436-462(2015). 

  90. Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, "Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator," ACS Nano. 10, 4797-4805 (2016) 

  91. Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, "Triboelectric Nanogenerator: Vertical Contact-Separation Mode", in Triboelectric Nanogenerators (Springer, New York, 2016), 23-47 (2016) 

  92. S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K. S. Shin, D. Kim, S. K. Kim, K. H. Lee, and H. J. Shin, "Transparent flexible graphene triboelectric nanogenerators," Adv. Mater. 26, 3918-3925 (2014) 

  93. L. Dhakar, F. E. H. Tay, and C. Lee, "Development of a broadband triboelectric energy harvester with SU-8 micropillars," J. Micro Electro Mech. Syst 24, 91-99 (2015) 

  94. M. Dresselhaus and I. Thomas, "Alternative energy technologies," Nature. 414, 332-337 (2001) 

  95. Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, "ZnO Nanostructures for Dye-Sensitized Solar Cells," Adv. Mater. 21, 4087-4108 (2009) 

  96. F. J. DiSalvo, "Thermoelectric cooling and power generation," Science. 285, 703-706 (1999) 

  97. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, and D. Vashaee, "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science. 320, 634-638 (2008) 

  98. N. R. Alluri, A. Chandrasekhar, and S.-J. Kim, "Exalted Electric Output via Piezo- Triboelectric Coupling/Sustainable Butterfly Wing Structure Type Multiunit Hybrid Nanogenerator," ACS Sustain. Chem. Eng. 6, 1919-1933 (2018) 

  99. M. Lee, R. Yang, C. Li, and Z. L. Wang, "Nanowire- Quantum Dot Hybridized Cell for Harvesting Sound and Solar Energies," The J. Phys. Chem. Lett. 1, 2929-2935 (2010) 

  100. M. Han, X. Zhang, W. Liu, X. Sun, X. Peng, and H. Zhang, "Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism," Sci. China. Technol. Sci. 56, 1835-1841 (2013) 

  101. Chen Xu and Zhong Lin Wang, "Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy," Adv. Mater. 23, 873-877 (2011) 

  102. C. Pan, W. Guo, L. Dong, G. Zhu, and Z. L. Wang, "Optical Fiber-Based Core-Shell Coaxially Structured Hybrid Cells for Self- Powered Nanosystems," Adv. Mater. 24, 3356-3361 (2012) 

  103. D.-Y. Lee, H. Kim, H.-M. Li, A.-R. Jang, Y.-D. Lim, S. N. Cha, Y. J. Park, D. J. Kang, and W. J. Yoo, "Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator," Nanotechnology. 24, 175402 (2013) 

  104. Y. Yang, H. Zhang, Z.-H. Lin, Y. Liu, J. Chen, Z. Lin, Y. S. Zhou, C. P. Wong, and Z. L. Wang, "A hybrid energy cell for selfpowered water splitting," Energy Environ. Sci. 6, 2429-2434 (2013) 

  105. Y. Yang, H. Zhang, Y. Liu, Z.-H. Lin, S. Lee, Z. Lin, C. P. Wong, and Z. L. Wang, "Silicon-based hybrid energy cell for selfpowered electrodegradation and personal electronics," ACS Nano. 7, 2808-2813 (2013) 

  106. S.-B. Jeon, D. Kim, G.-W. Yoon, J.-B. Yoon, and Y.-K. Choi, "Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight," Nano Energy. 12, 636-645 (2015) 

  107. L. Zheng, G. Cheng, J. Chen, L. Lin, J. Wang, Y. Liu, H. Li, and Z. L. Wang, "A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock," Adv. Energy. Mater. 5, 1501152 (2015) 

  108. Y. Fang, J. Tong, Q. Zhong, Q. Chen, J. Zhou, Q. Luo, Y. Zhou, Z. Wang, and B. Hu, "Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies," Nano Energy. 16, 301-309 (2015) 

  109. H. Guo, Z. Wen, Y. Zi, M. H. Yeh, J. Wang, L. Zhu, C. Hu, and Z. L. Wang, "A Water- Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments," Adv. Energy. Mater. 6, (2016) 

  110. H. Zhong, Z. Wu, X. Li, W. Xu, S. Xu, S. Zhang, Z. Xu, H. Chen, and S. Lin, "Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow," Carbon. 105, 199-204 (2016) 

  111. Semsudin, N.A.A., et al., "Integrated hybrid micro energy harvester based on thermal and vibration using op-amp for biomedical devices". Asian J. Sci. Res. 10, 34-42 (2017) 

  112. Jiang, C., et al., “Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect”. ACS Nano. 11, 9405-9412 (2017). 

  113. You, M.-H., et al., "Self-Powered Flexible Hybrid Piezoelectric-Pyroelectric Nanogenerator based on Non-woven Nanofiber Membranes". J. Mater. Chem. A. 6, 3500-3509 (2018) 

  114. Vivekananthan, V., et al., "A sliding mode contact electrification based triboelectricelectromagnetic hybrid generator for smallscale biomechanical energy harvesting," Micro and Nano Syst Lett. 7, 1-8 (2019) 

  115. H. Kim, S. Priya, H. Stephanou, and K. Uchino, "Consideration of impedance matching techniques for efficient piezoelectric energy harvesting," IEEE transactions on ultrasonics, IEEE. T. Ultrason. Ferr. 54, (2007) 

  116. J. Briscoe, N. Jalali, P. Woolliams, M. Stewart, P. M. Weaver, M. Cain, and S. Dunn, "Measurement techniques for piezoelectric nanogenerators," Energy Environ. Sci. 6, 3035-3045 (2013) 

  117. S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando, and Z. L. Wang, "Simulation method for optimizing the performance of an integrated triboelectric nanogenerator energy harvesting system," Nano Energy. 8, 150-156 (2014) 

  118. C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, "Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy," Adv. Mater. 26, 3580- 3591 (2014). 

  119. H. Yamazaki and T. Kitayama, "Pyroelectric properties of polymer-ferroelectric composites," Ferroelectrics. 33, 147-153 (1981) 

  120. Q. Leng, L. Chen, H. Guo, J. Liu, G. Liu, C. Hu, and Y. Xi, "Harvesting heat energy from hot/cold water with a pyroelectric generator," J. Mater. Chem. A. 2, 11940-11947 (2014) 

  121. D. Zhu, M. J. Tudor, and S. P. Beeby, "Strategies for increasing the operating frequency range of vibration energy harvesters: a review," Meas Sci. Technol. 21, 022001 (2009) 

  122. X. Wang, S. Niu, F. Yi, Y. Yin, C. Hao, K. Dai, Y. Zhang, Z. You, and Z. L. Wang, "Harvesting ambient vibration energy over a wide frequency range for self-powered electronics," ACS Nano. 11, 1728-1735 (2017) 

  123. S. Chen, X. Tao, W. Zeng, B. Yang, and S. Shang, "Quantifying Energy Harvested from Contact-Mode Hybrid Nanogenerators with Cascaded Piezoelectric and Triboelectric Units," Adv. Energy. Mater. 7, (2017) 

  124. Wang, X., et al. "Flexible triboelectric and piezoelectric coupling nanogenerator based on electrospinning P(VDF-TRFE) nanowires. Paper presented in 28th International Conference on Micro Electro Mechanical Systems in Estoril," Portugal. IEEE (110-13) 2015 

  125. Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang, and Z. L. Wang, "Hybrid energy cell for degradation of methyl orange by selfpowered electrocatalytic oxidation," Nano Lett. 13, 803-808 (2013) 

  126. L. S. McCarty and G. M. Whitesides, "Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets," Angew. Chem. 47, 2188-2207 (2008) 

  127. M. Han, X. Chen, B. Yu, and H. Zhang, "Coupling of piezoelectric and triboelectric effects: From theoretical analysis to experimental verification," Adv. Electron. Mater. 1, (2015) 

  128. J. Zhu, X. Hou, X. Niu, X. Guo, J. Zhang, J. He, T. Guo, X. Chou, C. Xue, and W. Zhang, "The d-arched piezoelectric-triboelectric hybrid nanogenerator as a self-powered vibration sensor," Sens. Actuators A. Phys. 263, 317-325 (2017) 

  129. Wu, Y., et al., "Flexible composite-nanofiber based piezo-triboelectric nanogenerators for wearable electronics." J. Mater. Chem. A. 7, 13347-13355 (2019) 

  130. Li, M., et al., "All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator." Nano. Res. 12, 1831-1835 (2019) 

  131. Lapc?inskis, L., et al., "Hybrid Tribo-Piezo-Electric Nanogenerator with Unprecedented Performance Based on Ferroelectric Composite Contacting Layers." ACS Appl. Energy Mater. 2, 4027-4032 (2019) 

  132. Chung, J., et al., "Hand-Driven Gyroscopic Hybrid Nanogenerator for Recharging Portable Devices." Adv. Sci. 5, 1801054 (2018) 

  133. H. Kim, S. M. Kim, H. Son, H. Kim, B. Park, J. Ku, J. I. Sohn, K. Im, J. E. Jang, and J.-J. Park, "Enhancement of piezoelectricity via electrostatic effects on a textile platform," Energy Environ. Sci. 5, 8932-8936 (2012) 

  134. C. Xue, J. Li, Q. Zhang, Z. Zhang, Z. Hai, L. Gao, R. Feng, J. Tang, J. Liu, and W. Zhang, "A novel arch-shape nanogenerator based on piezoelectric and triboelectric mechanism for mechanical energy harvesting," Nanomaterials. 5, 36-46 (2014) 

  135. Q. Nguyen, B. H. Kim, and J. W. Kwon, "Paper-based ZnO nanogenerator using contact electrification and piezoelectric effects," Journal of Microelectromechanical Systems 24, 519-521 (2015) 

  136. T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, and M. Zhu, "Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers," Nano Energy. 14, 226-235 (2015) 

  137. P. Bai, G. Zhu, Y. S. Zhou, S. Wang, J. Ma, G. Zhang, and Z. L. Wang, "Dipole-momentinduced effect on contact electrification for triboelectric nanogenerators," Nano Res. 7, 990-997 (2014) 

  138. G. Romano, G. Mantini, A. Di Carlo, A. D'Amico, C. Falconi, and Z. L. Wang, "Piezoelectric potential in vertically aligned nanowires for high output nanogenerators," Nanotechnology. 22, 465401 (2011) 

  139. X. Li, Z.-H. Lin, G. Cheng, X. Wen, Y. Liu, S. Niu, and Z. L. Wang, "3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor," ACS Nano. 8, 10674-10681 (2014) 

  140. Zhao, C., et al., "Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting." Nano Energy. 57, 440-449 (2019) 

  141. Chen, C., et al., A fully encapsulated piezoelectric-triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polym. Lett. 13, 533-542 (2019) 

  142. Y. Zhu, B. Yang, J. Liu, X. Wang, X. Chen, and C. Yang, "An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF," J. Microelectromech. S. 24, 513-515 (2015) 

  143. H. Li, L. Su, S. Kuang, Y. Fan, Y. Wu, Z. L. Wang, and G. Zhu, "Multilayered flexible nanocomposite for hybrid nanogenerator enabled by conjunction of piezoelectricity and triboelectricity," Nano. Res. 10, 785-793 (2017) 

  144. G. Hassan, F. Khan, A. Hassan, S. Ali, J. Bae, and C. H. Lee, "A flat-panel-shaped hybrid piezo/triboelectric nanogenerator for ambient energy harvesting," Nanotechnology. 28, 175402 (2017) 

  145. Jirayupat, C., et al.,"Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane-Al Structure for Enhanced Triboelectric Performance", ACS Appl. Mater. Interfaces. 10, 6433-6440 (2018). 

  146. Y. Xie, S. Wang, L. Lin, Q. Jing, Z.-H. Lin, S. Niu, Z. Wu, and Z. L. Wang, "Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy," ACS Nano. 7, 7119-7125 (2013) 

  147. L. Zhang, B. Zhang, J. Chen, L. Jin, W. Deng, J. Tang, H. Zhang, H. Pan, M. Zhu, and W. Yang, "Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops," Adv. Mater. 28, 1650-1656 (2016) 

  148. T. Chen, Y. Xia, W. Liu, H. Liu, L. Sun, and C. Lee, "A hybrid flapping-blade wind energy harvester based on vortex shedding effect," J. Microelectromech. S. 25, 845-847 (2016) 

  149. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, "Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films," Nano. Lett. 12, 3109-3114 (2012) 

  150. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, and Y. S. Jung, "Topographically-designed triboelectric nanogenerator via block copolymer selfassembly," Nano. Lett. 14, 7031-7038 (2014) 

  151. P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, and Z. L. Wang, "Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring," Adv. Func. Mater. 24, 5807-5813 (2014) 

  152. W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, and Z. L. Wang, "Harvesting energy from the natural vibration of human walking," ACS Nano. 7, 11317-11324 (2013) 

  153. X. Yang and W. A. Daoud, "Synergetic effects in composite-based flexible hybrid mechanical energy harvesting generator," J. Mater. Chem. A. 5, 9113-9121 (2017) 

  154. Y. Qian, D .J .Kang, "Poly(dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric triboelectric generation," ACS Appl. Mater. Interfaces 10, 32281-32288 (2018) 

  155. W. He, Y. Qian, B. S. Lee, F. Zhang, A. Rasheed, J. E. Jung, D. J. Kang, "Ultrahigh Output Piezoelectric and Triboelectric Hybrid Nanogenerators Based on ZnO Nanoflakes/Polydimethylsiloxane Composite Films," ACS Appl. Mater. Interfaces 2018, 10, 44415-44420 (2018) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로