$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

세륨옥사이드나노입자(Cerium oxide nano particles: CNPs)를 함유한 치면열구전색재의 Streptococcus mutans 부착량 변화
Changes in the amount of adhesion of Streptococcus mutans to pit and fissure sealant incorporating cerium oxide nano particles(CNPs) 원문보기

JKSDH : Journal of Korean Society of Dental Hygiene = 한국치위생학회지, v.20 no.4, 2020년, pp.535 - 543  

이성숙 (여주대학교 치위생과) ,  박영민 (여주대학교 치위생과) ,  김동애 (여주대학교 치위생과)

Abstract AI-Helper 아이콘AI-Helper

Objectives: The aim of this study was to investigated the surface roughness and change in the amount of adhesion of Streptococcus mutans to the commercial pit and fissure sealant containing cerium oxide nano particles(CNPs). Methods: The CNPs was incorporated into a commercial pit and fissure sealan...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 기존의 치면열구전색재에 CNPs를 농도별로 첨가하여 치면열구전색재를 제조하고 표면거칠기와 세균부착을 평가함으로써 항균효과가 우수한 새로운 치면열구전색재를 개발하여 구강 양대 질환 중 하나인 치아우식증을 예방하는데 기여하고자 한다.
  • 이에 본 연구는 항균물질로 바이오의학 분야 활용으로 잠재성이 높은 CNPs 효과를 확인하기 위해 불소 성분이 방출되지 않으며 non- filler 형태의 상업용 치면열구전색재에 첨가하여 표면거칠기의 특성과 표면에 나타나는 Streptococcus mutans의 부착도를 평가하여 새로운 치면열구전색재의 항균성을 평가하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
치아우식증을 일으키는 중요한 원인균은 무엇인가? 치아우식증은 치의학의 발달에도 불구하고 치주질환과 더불어 구강병의 양대 질환으로 다양한 연령층에서 문제점을 야기하고 있다[1]. 치아우식증은 구강 내 상주하는 세균 중 Streptococcus mutans(S. mutans)가 우식증을 일으키는 중요한 원인균으로 탄수화물 대사 작용으로 산을 생성하여 치아 표면에 부착하고 법랑질을 탈회하여 우식증을 유발한다[2,3]. 이러한 치아우식증을 예방하기 위해 치면세균막조절, 불소이용, 식이조절, 잇솔질교육, 치면열구전색재 수복 등 다양한 방법이 있으며 이 중에서 가장 효과적인 예방법이 치면열구전색재 수복이다[4,5].
치아우식증을 예방하는 방법은 무엇이 있는가? mutans)가 우식증을 일으키는 중요한 원인균으로 탄수화물 대사 작용으로 산을 생성하여 치아 표면에 부착하고 법랑질을 탈회하여 우식증을 유발한다[2,3]. 이러한 치아우식증을 예방하기 위해 치면세균막조절, 불소이용, 식이조절, 잇솔질교육, 치면열구전색재 수복 등 다양한 방법이 있으며 이 중에서 가장 효과적인 예방법이 치면열구전색재 수복이다[4,5]. 우식증의 발생 빈도가 높은 부위는 치아의 형태학적 특징인 깊은 소와와 열구가 존재하는 교합면 부위다.
치아우식증의 발생 빈도가 높은 부위는 어디인가? 이러한 치아우식증을 예방하기 위해 치면세균막조절, 불소이용, 식이조절, 잇솔질교육, 치면열구전색재 수복 등 다양한 방법이 있으며 이 중에서 가장 효과적인 예방법이 치면열구전색재 수복이다[4,5]. 우식증의 발생 빈도가 높은 부위는 치아의 형태학적 특징인 깊은 소와와 열구가 존재하는 교합면 부위다. 이러한 특징은 구강 내 미생물과 음식물잔사 저류의 장소를 제공하고 단순한 기계적 방법으로 제거가 어려우며 국소적인 불소이용은 평활면에는 효과적이나 교합면 부위의 우식예방 효과에는 미흡하다[4,6].
질의응답 정보가 도움이 되었나요?

참고문헌 (31)

  1. Park KH, Lee MR. Comparative study on oral symptoms in middle school and high school students of multicultural and ordinary families in Korea. J Korean Soc Dent Hyg 2017;7(2):193-202. https://doi.org/10.13065/jksdh.2017.17.02.193 

  2. Kang JM, Im SU, Jo HY, Ma JK, Kim JS, Kim KH, et al. Adhesive characteristics of Mutans Streptococci on the surface of filling materials and sealant. Kor J Dent Mater 2015;42(3):229-37. https://doi.org/10.14815/kjdm.2015.42.3.229 

  3. Jun SK, Kim DA. Effect of physical properties and bacterial adherence inhibition of pit and fissure sealant containing bioactive glass nano particles(BGn). Jour of KoCon a 2018;18(3):542-9. https://doi.org/10.5392/JKCA.2018.18.03.542 

  4. Kim JW. An experimental study on the anticariogenic effect of fluoride-releasing pit and fissure sealant. J Korean Acad Pediatr Dent 1998;25(4):849-57. 

  5. Jung YB, Shin SC. A comparative experimental study on hardness in several materials for sealants. J Korean Acad Oral Health 1996;20(2):247-57. 

  6. Jung HK. Pit and fissure sealant. The Journal Korean Dent Assoc 1998;26(5):384-8. 

  7. Cuto EI, Buonocore MG. Sealing of pits and fissures with an adhesive resin:Its use in caries prevention. J Am Dent Assoc 1967;21(1):121-8. https://doi.org/10.14219/jada.archive.1967.0205 

  8. Nam SM, Ku HM, Lee ES, Kim BI. Reliability of Q-Ray view for assessing retention status of pit and fissure sealant. The Journal Korean Dent Assoc 2020;58(3):140-51. 

  9. Yoon HS, Park CM. Anti-bacterial effects of basil oil on streptococcus mutans and porphyromonas gingivalis . Journal of Korean Soc Integra Med 2018;6(3):131-9. https://doi.org/10.15268/ksim.2018.6.3.131 

  10. Jarvinen H, Tenovuo J, Huovinen P. In vitro susceptibility of streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother 1993;37(5):1158-9. 

  11. Ribeiro J, Ericson D. In vitro antibacterial effect of chlorhexidine added to glass-ionomer cements. Eur J Oral Sci 1991;99(6):533-40. https://doi.org/10.1111/j.1600-0722.1991.tb01066.x 

  12. Shimazu K, Ogata K, Karibe H. Evaluation of the ion-releasing and recharging abilities of a resin-based fissure sealant containing S-PRG filler. Dent Mater J 2011;30(6):923-7. https://doi:10.4012/dmj.2011-124 

  13. Pai MR, Acharya LD, Udupa N. Evaluation of antiplaque activity of Azadirachta indica leaf extract gel-a 6-week clinical study. J Ethnopharmacol 2004;90(1):99-103. https://doi.org/10.1016/j.jep.2003.09.035 

  14. Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-Azzam S, et al. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 2015;67(3):427-35. https://doi: 10.1007/s10616-014-9701-8 

  15. Wu W, Li S, Liao S, Xiang F, Wu X. Preparation of new sunscreen materials $Ce_1-xZn xO_2-x$ via solid-state reaction at room temperature and study on their properties. Rare Metals 2010;29(2):149-53. https://doi.org/10.1007/s12598-010-0026-2 

  16. Kim YH. Variety of properties and functions of cerium. KISTI Analysis report 2010;4:1-5. 

  17. Santos C, Passos Farias I, Reis Albuquerque A, Silva P, CostaOne G, Sampaio F. Antimicrobial activity of nano cerium oxide (IV) ( $CeO_2$ ) against Streptococcus mutans. BMC Proc 2014;8(Suppl 4):P48. 

  18. Thakur N, Manna P, Das J. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. J Nanobiotechnology 2019;17(1):1-27. https://doi.org/10.1186/s12951-019-0516-9 

  19. Xu J, Li G, Li L. $CeO_2$ nanocrystals: seed-mediated synthesis and size control. Materials Research Bulletin 2008;43(4):990-5. https://doi.org/10.1016/j.materresbull.2007.04.019 

  20. Ikeda-OA, Hennig C, Weiss S, Yaita T, Bernhard G. Hydrolysis of tetravalent cerium for a simple route to nanocrystalline cerium dioxide: an in situ spectroscopic study of nanocrystal evolution. Chem Eur J 2013;19(23):7348-60. https://doi.org/10.1002/chem.201204101 

  21. Jee HJ. The inhibity effect of light-cured pit & fissure sealant incorporating antibacterial filler against s. mutans[Master's thesis]. Seoul: Univ. of Yonsei, 2004. 

  22. Fard JK, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv Pharm Bull 2015;5(4):447-54. https://doi.org/10.15171/apb.2015.061 

  23. Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol 2010;5(8):565-9. https://doi.org/10.1038/nnano.2010.83. 

  24. Yoon KY, Lee SJ, Lee JE, Bae GN, Ji JH, Hwang J, et al. Evaluation of antimicrobial characteristics of nanoparticles against bacteria. J Odor Indoor Environ 2005;2(1):46-53. 

  25. Venkatesh KS, Gopinath K, Palani NS, Arumugam A, Jose SP, Bahadur SA, et al. Plant pathogenic fungus F solani mediated biosynthesis of nanoceria: antibacterial and antibiofilm activity. RSC Adv 2016;6(48):42720-9. 

  26. Cuahtecontzi-Delint R, Mendez-Rojas MA, Bandala ER, Quiroz MA, Recillas S, Sanchez-Salas JL. Enhanced antibacterial activity of $CeO_2$ nanoparticles by surfactants. Int J Chem React Eng 2013;11(2):781-5. 

  27. Kim YJ, Kim S, Jeong TS. Plaque adhesion on the surface of various composite resin. J Koran Acad Pediatr Dent 2004;31(4):547-54. 

  28. Jeong MA, Kim DA. Effect of low molecular chitosan on the surface properties and oral bacteria adhesion of dental cement. J KoCon a 2019;19(2):277-83. https://doi.org/10.5392/JKCA.2019.19.02.277 

  29. Arumugam A, Karthikeyan C, Haja Hameed AS, Gopinath K, Gowri S, Karthika V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng C 2015;49:408-15. https://doi.org/10.1016/j.msec.2015.01.042 

  30. Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B. Photocatalytic activity of binary metal oxide nanocomposites of $CeO_2$ /CdO nanospheres: investigation of optical and antimicrobial activity. J Photochem Photobiol B Biol 2016;163:77-86. https://doi.org/10.1016/j.jphotobiol.2016.08.013 

  31. Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss, BA, Aljarah KM, Al-Azzam SI, et al. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 2015;67(3):427-35. https://doi.org/10.1007/s10616-014-9701-8 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로