$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

해수 중 용존 아연의 화학적 존재 형태 연구 동향
Review of Chemical Speciation of Dissolved Zinc in Seawater 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.25 no.3, 2020년, pp.67 - 80  

김태진 (부경대학교 해양학과)

초록
AI-Helper 아이콘AI-Helper

해양 환경에서 용존 미량금속 원소 중 하나인 아연(Zn)식물플랑크톤의 성장에 필수적인 미량영양염으로 알려져 있다. 외양 표층에서 대부분의 용존 아연은 용존 유기배위자와 강하게 결합하여 아연-유기착화합물을 형성하게 되고 이로 인해 생물 가용한 자유이온 형태의 아연(Zn2+)의 농도는 총 아연 농도의 5% 이내로 존재하게 된다. 이 논문에서는 아연의 화학적 존재 형태에 대한 개념과 측정 방법에 대해 간단히 소개하고, 주요 연구 사례를 통하여 미량금속의 화학 종조성이 해양 생지화학에 미치는 영향 및 의미, 아연-유기착화합물이 아연의 생물가용성에 미치는 영향, 아연과 결합하여 유기착화합물을 형성하는 용존 유기배위자의 기원에 대해 기술하였다.

Abstract AI-Helper 아이콘AI-Helper

Zinc (Zn) is known as an essential micronutrient for phytoplankton in the ocean. In surface waters, most of total dissolved Zn presents as organic complexes, and organic complexation dominates the speciation of Zn in seawater. Organic complexation reduces the bioavailable fraction of Zn, the free me...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 이 논문에서는 용존 아연의 화학적 존재 형태를 조사하기 위한 해수 시료의 획득, 분석 방법의 이론적 배경과 분석 방법에 대해 설명하고, 주요 연구 사례들을 소개하여 많은 연구자들이 용존 아연을 포함한 미량금속 원소의 농도 뿐만 아닌 화학적 존재 형태에 대해서도 관심을 가질 수 있는 기회를 제공하고자 하였다.
  • 아연-유기착화합물이 식물플랑크톤의 성장에 미치는 영향에 대해 설명하기 앞서, 미량금속 원소 중 용존 구리에 대하여 간략히 설명하고자 한다. 본래 해양환경에서 용존 구리의 총 농도는 10-10 – 10-9 M의 농도 범위를 가진다.
  • CLE-ACSV법은 전기화학 분석법의 하나로서 금속 이온의 농도에 비례해서 나타나는 환원 전류량을 측정하는 분석법이다. 이 논문에서는 아연의 화학적 존재 형태 분석을 위한 전처리 방법과 분석법의 이론적 배경을 설명하였다. 화학적 존재 형태를 알아보고자 하는 금속 원소에 따라 첨가해주는 인공 배위자가 다를 뿐 분석법의 이론적 배경은 동일하기 때문에 미량금속 원소 중 아연과 함께 상대적으로 화학적 존재 형태 연구가 활발히 이루어지고 있는 철과 구리의 분석법과 관련한 추가적인 정보는 Rue and Bruland(1995)와 Wong et al.
  • 이상에서 화학적 존재 형태에 대한 개념과 측정 방법, 해양 환경에서 아연과 결합하여 유기착화합물을 형성하는 용존 유기 배위자의 역할과 기원에 대하여 간단히 소개하고, 관련한 연구의 예들을 살펴보았다. 볼타메트리를 이용한 CLE-ACSV 분석법을 통하여 미량금속의 화학적 존재 형태에 대한 분석이 가능해지고, 그 결과로서 용존 금속과 결합하여 금속-유기착화합물을 형성하는 유기배위자의 농도, 금속 이온의 농도, 조건안정도 상수 등 미량금속의 농도 뿐만 아닌 보다 다양한 화학적 존재 형태에 대한 자료의 축적이 가능하게 되었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
해수 중에 존재하는 용존 금속 원소가 미량원소 또는 미량금속으로 불리우는 이유는 무엇인가? 해수 중에 존재하는 용존 금속 원소는 일반적으로 pM – nM (10-12 – 10-9 mol/L)의 농도로 존재하며, 이런 낮은 농도로 인하여 미량원소(Trace element) 또는 미량금속(Trace metal)으로 불리운다. 그 중 철(Fe), 구리(Cu), 니켈(Ni), 코발트(Co), 카드뮴(Cd), 아연(Zn) 등은 해양 환경에서 식물플랑크톤의 성장에 필수적인 미량영양염(micronutrient)으로서 궁극적으로는 해양의 탄소순환과 전지구적 기후변화에 영향을 미친다고 알려져 있다(Anderson, 2020).
용존 미량금속 원소 중, 용존 아연이 해양 환경에서 영양염형(Nutrient type)의 연직분포를 나타내는 이유는 무엇인가? 1). 이는 표층에서 생물에 의해 용존 아연이 소비되고 유기 입자로 심층으로 이동하여 재광물화에 의해 다시 용존상으로 돌아오기 때문이다(Bruland and Lohan, 2006; Anderson 2020). 아연은 이산화탄소를 탄산염으로 변환시키는 효소인 Carbonic anhydrase(Morel et al.
초창기의 연구를 통해 보고된 용존 미량금속 농도가 같은 해역에서 조차 매우 큰 차이를 보인 이유는 무엇인가? 하지만 초창기의 연구를 통해 보고된 용존 미량금속 농도는 같은 해역에서조차 매우 큰 차이를 보였는데, 당시 분석 기기의 검출 감도로는 매우 낮은 미량금속의 농도 레벨을 검출하기 어려운 것도 있었지만, 해수 시료의 채수 및 전처리, 분석 시에 사용되는 용기와 시약, 그리고 주변 환경으로부터 기인한 시료의 오염이 가장 큰 문제였다. 이후 분석 기술의 발전, 클린룸에 대한 개념의 도입과 함께 2000년대 들어 시작된 국제 연구 프로그램인 GEOTRACES를 통하여 미량금속의 오염을 최소화하는 청정 해수시료 채수법이 체계적으로 정립되었고(Cutter et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (40)

  1. Anderson, R.F., 2020. GEOTRACES: Accelerating Research on the Marine Biogeochemical Cycles of Trace Elements and Their Isotopes. Annual Review of Marine Science, 12(1): 49-85. 

  2. Baars, O. and P.L. Croot, 2011. The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 58(25-26): 2720-2732. 

  3. Brand, L.E., W.G. Sunda and R.R.L. Guillard, 1986. Reduction of marine phytoplankton reproduction rates by copper and cadmium. Journal of Experimental Marine Biology and Ecology, 96(3): 225-250. 

  4. Bruland, K.W., 1989. Complexation of zinc by natural organic ligands in the central North Pacific. Limnology and oceanography, 34(2): 269-285. 

  5. Bruland, K.W. and M.C. Lohan, 2006. Controls of trace metals in seawater. In: The oceans and marine geochemistry, edited by Elderfield H., H.D. Holland, H. Elderfield, and K.K. Turekian, Elsevier, Amsterdam, 23-47 pp. 

  6. Bruland, K.W., R.P. Franks, G.A. Knauer and J.H. Martin, 1979. Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Analytica Chimica Acta, 105: 233-245. 

  7. Campbell, P.G.C., O. Errecalde, C. Fortin, V.P. Hiriart-Baer and B. Vigneault, 2002. Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(1-2): 189-206. 

  8. Cutter, G.A. and K.W. Bruland, 2012. Rapid and noncontaminating sampling system for trace elements in global ocean surveys. Limnology and Oceanography: Methods, 10: 425-436. 

  9. Cutter, G.A., P. Andersson, L. Codispoti, P.L. Croot, R. Francois, M.C. Lohan and H. Obata, 2013. Sampling and Sample-handling Protocols for GEOTRACES Cruises, geotraces.org. 

  10. de Baar, H.J.W., K.R. Timmermans, P. Laan, H.H. De Porto, S. Ober, J.J. Blom, M.C. Bakker, J. Schilling, G. Sarthou, M.G. Smit and M. Klunder, 2008. Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program. Marine Chemistry, 111(1-2): 4-21. 

  11. Donat, J.R. and K.W. Bruland, 1990. A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Marine Chemistry, 28(4): 301-323. 

  12. Ellwood, M.J., 2004. Zinc and cadmium speciation in subantarctic waters east of New Zealand. Marine Chemistry, 87(1-2): 37-58. 

  13. Ellwood, M.J. and C.M.G. van den Berg, 2000. Zinc speciation in the Northeastern Atlantic Ocean. Marine Chemistry, 68(4): 295-306. 

  14. Guo, X., Y. Miyazawa and T. Yamagata, 2006. The Kuroshio Onshore Intrusion along the Shelf Break of the East China Sea: The Origin of the Tsushima Warm Current. Journal of Physical Oceanography, 36(12): 2205-2231. 

  15. Jakuba, R.W., J.W. Moffett and S.T. Dyhrman, 2008. Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Global Biogeochemical Cycles, 22(4): GB4012. 

  16. Jakuba, R.W., M.A. Saito, J.W. Moffett and Y. Xu, 2012. Dissolved zinc in the subarctic North Pacific and Bering Sea: Its distribution, speciation, and importance to primary producers. Global Biogeochemical Cycles, 26(2): GB2015. 

  17. Johnson, K.S., E. Boyle, K.W. Bruland, K.H. Coale, C. Measures, J.W. Moffett, A. Aguilar-Islas, K.A. Barbeau, B. Bergquist, A. Bowie, K.N. Buck, Y. Cai, Z. Chase, J. Cullen, T. Doi, V. Elrod, S. Fitzwater, M. Gordon, A. King, P. Laan, L. Laglera-Baquer, W. Landing, M. C. Lohan, J. Mendez, A. Milne, H. Obata, L. Ossiander, J. Plant, G. Sarthou, P. Sedwick, G.J. Smith, B. Sohst, S. Tanner, C.M.G. van den Berg and J. Wu, 2007. Developing standards for dissolved iron in seawater. Eos, Transactions American Geophysical Union, 88(11): 131-132. 

  18. Kim, S.H., K. Ra, K.-T. Kim, H. Jeong, J. Lee, D.-J. Kang, T. Rho and I. Kim, 2019. R/V Isabu-Based First Ultraclean Seawater Sampling for Ocean Trace Elements in Korea. Ocean Science Journal, 54(4): 673-684. 

  19. Kim, T., H. Obata, T. Gamo and J. Nishioka, 2015a. Sampling and onboard analytical methods for determining subnanomolar concentrations of zinc in seawater. Limnology and Oceanography: Methods, 13(1): 30-39. 

  20. Kim, T., H. Obata, Y. Kondo, H. Ogawa and T. Gamo, 2015b. Distribution and speciation of dissolved zinc in the western North Pacific and its adjacent seas. Marine Chemistry, 173: 330-341. 

  21. Kim, T., H. Obata and T. Gamo, 2015c. Dissolved Zn and its speciation in the northeastern Indian Ocean and the Andaman Sea. Frontiers in Marine Science, 2: 60. 

  22. Lane, T.W. and F.M. Morel, 2000. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant physiology, 123(1): 345-352. 

  23. Lohan, M.C., D.W. Crawford, D.A. Purdie and P.J. Statham, 2005. Iron and zinc enrichments in the northeastern subarctic Pacific: Ligand production and zinc availability in response to phytoplankton growth. Limnology and oceanography, 50(5): 1427-1437. 

  24. Measures, C.I., W.M. Landing, M.T. Brown and C.S. Buck, 2008. A commercially available rosette system for trace metal clean sampling. Limnology and Oceanography: Methods, 6: 384-394. 

  25. Moffett, J.W. and L.E. Brand, 1996. Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnology and oceanography, 41(3): 388-395. 

  26. Morel, F.M.M., J.R. Reinfelder, S.B. Roberts, C.P. Chamberlain, J.G. Lee and D. Yee, 1994. Zinc and carbon co-limitation of marine phytoplankton. Nature, 369(6483): 740-742. 

  27. Muller, F.L.L., S.B. Gulin and A. Kalvoy, 2001. Chemical speciation of copper and zinc in surface waters of the western Black Sea. Marine Chemistry, 76(4): 233-251. 

  28. Nakatsuka, T., M. Toda, K. Kawamura and M. Wakatsuchi, 2004. Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. Journal of Geophysical Research: Oceans, 109(C9): C09S14. 

  29. Obata, H., J. Nishioka, T. Kim, K. Norisuye, S. Takeda, Y. Wakuta and T. Gamo, 2017. Dissolved iron and zinc in Sagami Bay and the Izu-Ogasawara Trench. Journal of Oceanography, 73(3): 333-344. 

  30. Rijkenberg, M.J A., H.J.W. de Baar, K. Bakker, L.J.A. Gerringa, E. Keijzer, M. Laan, P. Laan, R. Middag, S. Ober, J. van Ooijen, S. Ossebaar, E.M. van Weerlee and M.G. Smit, 2015. "PRISTINE," a new high volume sampler for ultraclean sampling of trace metals and isotopes. Marine Chemistry, 177: 501-509. 

  31. Rue, E.L. and K.W. Bruland, 1995. Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Marine Chemistry, 50(1-4): 117-138. 

  32. Ruzic, I., 1982. Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Analytica Chimica Acta, 140(1): 99-113. 

  33. Shaked, Y., Y. Xu, K. Leblanc and F.M.M. Morel, 2006. Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the ocean. Limnology and oceanography, 51(1): 299-309. 

  34. Skrabal, S.A., K.L. Lieseke and R.J. Kieber, 2006. Dissolved zinc and zinc-complexing ligands in an organic-rich estuary: Benthic fluxes and comparison with copper speciation. Marine Chemistry, 100(1-2): 108-123. 

  35. Sunda, W.G. and S.A. Huntsman, 1992. Feedback interactions between zinc and phytoplankton in seawater. Limnology and oceanography, 37(1): 25-40. 

  36. Turner, D.R., M. Whitfield and A.G. Dickson, 1981. The equilibrium speciation of dissolved components in freshwater and sea water at $25^{\circ}C$ and 1 atm pressure. Geochimica et Cosmochimica Acta, 45(6): 855-881. 

  37. van den Berg, C.M.G., 1982. Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2 I. Theory. Marine Chemistry, 11(4): 307-322. 

  38. van den Berg, C.M.G., 1985. Determination of the zinc complexing capacity in seawater by cathodic stripping voltammetry of zinc-APDC complex ions. Marine Chemistry, 16(2): 121-130. 

  39. Wong, K.H., H. Obata, T. Kim, A.S. Mashio, H. Fukuda and H. Ogawa, 2018. Organic complexation of copper in estuarine waters: An assessment of the multi-detection window approach. Marine Chemistry, 204: 144-151. 

  40. Wyatt, N.J., A. Milne, E.M.S. Woodward, A.P. Rees, T.J. Browning, H.A. Bouman, P.J. Worsfold and M.C. Lohan, 2014. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at $40^{\circ}S$ . Global Biogeochemical Cycles, 28(1): 44-56. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로