$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지역규모 대기질 모델 결과 평가를 위한 통계 검증지표 활용 - 미세먼지 모델링을 중심으로 -
A Study on Statistical Parameters for the Evaluation of Regional Air Quality Modeling Results - Focused on Fine Dust Modeling - 원문보기

환경영향평가 = Journal of environmental impact assessment, v.29 no.4, 2020년, pp.272 - 285  

김철희 (부산대학교 대기환경과학과) ,  이상현 (공주대학교 대기과학과) ,  장민 (한국외국어대학교 대기환경연구센터) ,  천성남 (한국전력공사 전력연구원) ,  강수지 (한국전력공사 전력연구원) ,  고광근 (연세대학교 동서문제연구원) ,  이종재 (울산과학기술원 도시환경공학부) ,  이효정 (부산대학교 대기환경과학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 3차원 기상 및 대기질 모델의 입출력 자료를 평가하는 데 필요한 통계 검증지표를 선별하고, 선정된 검증지표의 기준치를 조사하여 그 결과를 요약하였다. 여러 국내외 문헌과 최근 논문 검토를 통해 최종 선정된 통계 검증지표는 MB (Mean Bias), ME (Mean Error), MNB (Mean Normalized Bias Error), MNE (Mean Absolute Gross Error), RMSE (Root Mean Square Error), IOA (Index of Agreement), R (Correlation Coefficient), FE (Fractional Error), FB (Fractional Bias)로 총 9가지이며, 국내외 문헌을 통해 그 기준치를 확인하였다. 그 결과, 기상모델의 경우 대부분 MB와 ME가 주요 지표로 사용되어 왔고, 대기질 모델 결과는 NMB와 NME 지표가 주로 사용되었으며, 그 기준치의 차이를 분석하였다. 아울러 이들 통계 검증지표값을 이용하여 모델 예측 결과를 효과적으로 비교하기 위한 표출 도식으로 축구 도식, 테일러 도식, Q-Q (Quantile-Quantile) 도식의 장단점을 분석하였다. 나아가 본 연구 결과를 기반으로 우리나라의 산악지역의 특수성 등이 잘 고려된 통계 검증지표의 기준치 설정 등의 추가연구가 효과적으로 진행될 수 있기를 기대한다.

Abstract AI-Helper 아이콘AI-Helper

We investigated statistical evaluation parameters for 3D meteorological and air quality models and selected several quantitative indicator references, and summarized the reference values of the statistical parameters for domestic air quality modeling researcher. The finally selected 9 statistical pa...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 특히 국내 미세먼지와 연관되는 항목들을 검증하고 평가하는 기준치에 대한 논의는 국내에서도 상대적으로 많이 다루어지지 않기 때문에 이들의 사용 기준치의 연구는 반드시 수행되어야 할 것으로 판단된다. 본 연구에서는 또한 우리나라 각 시군구 등 행정구역을 기준으로 하는 대기환경영향평가 연구가 절대 다수를 차지하므로 우리나라 공간규모에 해당하는 중규모 기상모델과 지역규모 대기질 모델에 국한하여 조사하였다. 즉, 기후모델과 같은 전지구규모 모델이나 빌딩 규모의 미규모 모델의 예측 검증 지표 해석은 본 연구의 대상에서 제외하였다.
  • 본 연구에서는 모델의 산출 자료인 기상 자료와 대기질 자료를 분리하여 그 결과를 검증하는 통계 검증 지표를 소개하고 최근 많이 연구되고 있는 미세먼지 모델링 연구 결과를 평가하는 지표의 기준치를 조사하고자 하며, 이를 적용한 국내외 사례들 또한 정리하고자 한다. 특히 국내 미세먼지와 연관되는 항목들을 검증하고 평가하는 기준치에 대한 논의는 국내에서도 상대적으로 많이 다루어지지 않기 때문에 이들의 사용 기준치의 연구는 반드시 수행되어야 할 것으로 판단된다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
3차원 대기질 모델은 어떻게 사용되는가? 3차원 대기질 모델은 미세먼지 예보뿐만 아니라 건설 분야의 환경영향평가 등 매우 다양하게 사용된다. 특히, 측정 자료만으로는 주변 배출원으로부터의 정량적 영향 해석이 불가능하므로, 필히 3차원 지역규모 대기질 모델을 활용하여야 한다.
우리나라에서 대기오염을 집중적으로 측정하는 집중 측정소 6곳은 어디에 있는가? 5) 질량 농도와 구성 성분 및 그 전구물질 (예, NOx, SO2)의 지상 측정 자료의 가용성은 연도와 영역에 따라 상당히 다르다. 2016년 기준으로 국내에 사용 가능한 자료로 환경부에서 운영하는 260여 개소 AQMS (Air Quality Monitoring Station) 네트워크 자료와 6개 대기오염 집중측정지점(백령도, 서울, 대전, 광주, 울산, 제주) 측정자료가 존재한다. 이들 집중 측정소 자료는 미세먼지 모델링 결과를 성분별로 상세하게 검증할 수 있어 유용하다.
모델의 입출력자료를 정량적이고 객관적으로 평가하기 위한 기본적인 방법은 무엇인가? 모델의 입출력자료를 정량적이고 객관적으로 평가하기 위해서는 모델에 의해 도출된 결과의 오차가 검증 지표 오차 기준 이내에 해당되는 지를 확인하는 방식이 제일 효과적이고 기본적인 방법이다. 그러기 위해서는 모델의 입출력자료를 정량적으로 평가하는데 사용되는 통계 검증지표의 오차 기준값(reference value)에 근거하여야 한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. Borge R, Alexandrov J, Lumbreras J, Rodriguez E. 2008. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula. Atmospheric Environment. 42: 8560-8574. 

  2. Boylan JW, Russell AG. 2006. PM and light extinction model performance metrics, goals, and criteria for three dimensional air quality models. Atmospheric Environment. 40: 4946-4959. 

  3. Byun DW, Kim ST, Kim SB. 2007. Evaluation of air quality models for the simulation of a high ozone episode in the Houston metropolitan area. Atmospheric Environment. 41: 837-853. 

  4. Chen D, Xie X, Zhou Y, Lang J, Xu T, Tang N, Zhao Y, Liu X. 2017. Performance Evaluation of the WRF-Chem Model with Different Physical Parameterization Schemes during an Extremely High $PM_{2.5}$ Pollution Episode in Beijing. Aerosol and Air Quality Research. 17: 262-277. 

  5. Choi DR, Koo YS, Jo JS, Jang YK, Lee JB, Park HJ. 2016. The effect of dust emissions on $PM_{10}$ concentration in East Asia, Journal of Korean Society for Atmospheric Environment. 32(1): 32-45. [Korean Literature] 

  6. Emery C, Tai E, Yarwood G. 2001. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes, Prepared for the Texas Natural Resource Conservation Commission. ENVIRON International Corporation. Novato, CA. 

  7. Emery C, Liu Z, Russell AG, Odman MT, Yarwood G, Kumar N. 2017. Recommendations on statistics and benchmarks to assess photochemical model performance. Journal of the Air & Waste Management Association 67(5): 582-598. 

  8. Environ. 2014. User's Guide: Comprehensive Air Quality Model with Extensions Version 6.1, http://www.camx.com. 

  9. Environ and Alpine. 2012. Western Regional Air Partnership (WRAP) West-wide Jump-start Air Quality Modeling Study (WestJump AQMS) - WRF Application/Evaluation. ENVIRON International Corporation, Novato, California. Alpine Geophysics, LLC. University of North Carolina. February 29. 

  10. Fox DG. 1981. Judging air quality modeled performance. Bulletin of American Meteorological Society 62: 599-609. 

  11. Grell GA, Emeis S, Stockwell WR, Schoenemeyer T, Forkel R, Michalakes J, Knoche R, Seidl W. 2000. Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmospheric Environment. 34: 1435-1453. 

  12. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, Skamarock WC, Eder B. 2005. Fully coupled "online" chemistry within the WRF model. Atmospheric Environment. 39: 6957-6975. 

  13. Hogrefe C, Civerolo KL, Hao W, Ku JY, Zalewsky EE, Sistla G. 2008. Rethinking the assessment of photochemical modeling systems in air quality planning applications. J. Air Waste Management Association. 58: 1086-1099. 

  14. Hogrefe C, Hao W, Zalewsky EE, Ku JY, Lynn B, Rosenzweig V, Schultz MG, Rast S, Newchurch MJ, Wang L, Kinney PL, Sistla G. 2011. An analysis of long-term regional-scale ozone simulations over the northeastern United States: Variability and trends. Atmospheric Chemistry and Physics 11: 567-582. 

  15. Hurley PJ. 1999. The Air Pollution Model (TAPM) Version 1: Technical Description and Examples. CSIRO: Clayton, Australia. 11: 567-582. 

  16. Ju H, Bae C, Kim BU, Kim H, Yoo C, Kim S. 2017. $PM_{2.5}$ Source Apportionment Analysis to Investigate Contributions of the Major Source Areas in the Southeastern Region of South Korea. Journal of Korean Society for Atmospheric Environment. 34(4): 517-533. [Korean Literature] 

  17. Korea Electric Power Corporation Research Institute. 2020. Study of $PM_{2.5}$ in Korea (SPIKE). Contributions from different sources and regions:3002017909. 

  18. Kim S, Kim O, Kim BU, Kim HC. 2017. Impact of Emissions from Major Point Sources in Chungcheongnam-do on Surface Fine Particulate Matter Concentration in the Surrounding Area. Journal of Korean Society for Atmospheric Environment. 33(2): 159-173. [Korean Literature] 

  19. Kryza M, Werner M, Dore AJ, Vieno M, Blas M, Drzeniecka OA, Netzel P. 2012. Modelling meteorological conditions for the episode (December 2009) of measured high $PM_{10}$ air concentrations in SW Poland - application of the WRF model, International Journal of Environment and Pollution. 50: 41-52. 

  20. McNally DE. 2009. 12km MM5 Performance Goals. Presentation to the Ad-Hoc Meteorology Group. 25-June. 

  21. Miglietta MM, Thunix P, Georgieva E, Pederzoli A, Bessagnet B, Terrenoire E, Colette A. 2012. Evaluation of WRF model performance in different European regions with the DELTAFAIRMODE evaluation tool. International Journal of Environment and Pollution. 50: 83-97. 

  22. National Institute of Environmental Research (NIER). 2010. A study of data accuracy improvement for national air quality forecasting(III). [Korean Literature] 

  23. National Institute of Environmental Research (NIER). 2013. Studies on the optimization method for improving the accuracy of air quality modeling. [Korean Literature] 

  24. National Institute of Environmental Research (NIER). 2016. A study of accuracy improvement of numerical air quality forecasting model(III). [Korean Literature] 

  25. National Institute of Environmental Research (NIER). 2017. A study of accuracy improvement of numerical air quality forecasting model(III). [Korean Literature] 

  26. National Research Council (NRC). 2007. Models in Environmental Regulatory Decision Making. Washington, DC: National Research Council of the National Academies. doi:10.17226/11972. 

  27. Scire JS, Robe FR, Fernau ME, Yamartino RJ. 2000. A User's Guide for the CALMET Meteorological Model(Version 5). Earth Tech, Inc. 

  28. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X, Wang W, Powers JG. 2008. A description of the advanced research WRF version 3 (Note NCAR/TN-475+STR). National Center For Atmospheric Research Boulder Co Mesoscale and Micro-scale Meteorology Division. 

  29. U.S. EPA (Environmental Protection Agency). 2004. The Ozone Report: Measuring Progress Through 2003. EPA 454/k-04-001. http://www.epa.gov/air/airtrends/aqtrnd04/ozone.html. 

  30. U.S. EPA (Environmental Protection Agency). 2005. Technical Support Document for the Final Clean Air Interstate Rule-Air Quality Modeling. March 2005. Docket number OAR-2003-0053-0162. http://www.epa.gov/CAIR/pdfs/finaltech02.pdf. 

  31. U.S. EPA (Environmental Protection Agency). 2006. Office of Air Quality Planning and Standards, Technical Support Document for the Proposed PM NAAQS Rule Response Surface Modeling. Research Triangle Park. NC 27711, February 2006. 

  32. U.S. EPA (Environmental Protection Agency). 2007. Guidance on the use of models and other analyses for demonstrating attainment of air quality goals for ozone, $PM_{2.5}$ , and regional haze. Tech Rep. EPA-454/B-07-002. Research Triangle Park. NC. 

  33. Yarwood G, Morris RE, Wilson GM. 2007. Particulate matter source apportionment technology (PSAT) in the CAMx photochemical grid model. Air Pollution Modeling and its Application XVII. 478-492. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로