$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구
A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery 원문보기

한국측량학회지 = Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, v.38 no.4, 2020년, pp.327 - 343  

정민영 (Dept. of Civil and Environmental Engineering, Seoul National University) ,  강원빈 (Dept. of Civil and Environmental Engineering, Seoul National University) ,  송아람 (Dept. of Civil and Environmental Engineering, Seoul National University) ,  김용일 (Dept. of Civil and Environmental Engineering, Seoul National University)

초록
AI-Helper 아이콘AI-Helper

본 연구는 효율적인 재난 피해 분석을 위해 재난 후 KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R 영상의 기하품질을 향상하는 방법을 제안한다. 제안 기법은 재난상황에 대한 데이터 수급의 한계를 해결하고자, 영상 수급이 원활한 Planetscope 정사영상과 KOMPSAT-3/3A 영상에 격자기반 SIFT (Scale Invariant Feature Transform) 기법을 적용하여 RPC (Rational Polynomial Coefficient) 보정에 필요한 GCP (Ground Control Point, 지상기준점)를 취득한다. 제안 기법을 검증하기 위해 2019년 4월 강릉 산불 피해 지역의 KOMPSAT-3 영상과 토지피복의 다양성을 고려하여 추가된 대전지역 KOMPSAT-3A 영상에 제안 기법을 적용하였다. 생성된 KOMPSAT-3/3A 정사영상의 기하품질을 검증한 결과, KOMPSAT-3 다중분광 영상의 위치오차 (RMSE: Root Mean Square Error)가 6.62화소에서 1.25화소로, KOMPSAT-3A의 경우 7.03화소에서 1.66화소로 감소되어 영상의 기하품질이 향상됨을 확인하였다. 기하품질이 향상된 KOMPSAT-3 정사영상은 산불 발생 전 Planetscope 정사영상과 비교되었으며, 이를 통해 향상된 기하품질이 산불 피해 지역 분석에 적합하다고 판단하였다. 본 연구는 GCP 취득의 대안으로 Planetscope 정사영상의 사용 가능성을 보여주었으며, 제안 기법은 재난 상황뿐만 아니라 Planetscope 영상의 수급이 가능한 다양한 KOMPSAT-3/3A 활용연구에 적용될 수 있을 것으로 예상된다.

Abstract AI-Helper 아이콘AI-Helper

This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho...

주제어

표/그림 (11)

참고문헌 (32)

  1. Ahn, K., Lee, H., Seo, D., Park, B.-W., and Jeong, D. (2014), The use of the Unified Control Points for RPC adjustment of KOMPSAT-3 satellite image, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 5, pp. 539-550. (in Korean with English abstract) 

  2. Choi, S. and Kang, J. (2012), Accuracy investigation of RPC-based block adjustment using high resolution satellite images GeoEye-1 and WorldView-2, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 30, No. 2, pp. 107-116. (in Korean with English abstract) 

  3. Fischler, M.A. and Bolles, R.C. (1981), Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, Vol. 24, No. 6, pp. 381-395. 

  4. Fraser, C.S. and Hanley, H.B. (2005), Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 8, pp. 909-915. 

  5. Ghuffar, S. (2018), DEM generation from multi satellite PlanetScope imagery, Remote Sensing, Vol. 10, No. 9, p.1462. 

  6. Grodecki, J. and Dial, G. (2003), Block adjustment of high-resolution satellite images described by rational polynomials, Photogrammetric Engineering & Remote Sensing, Vol. 69, No. 1, pp. 59-68. 

  7. Han, Y. (2013), Automatic image-to-image registration between high-resolution multisensor satellite data in urban areas, Ph.D. dissertation, Seoul National University, Seoul, Korea. 148p. (in Korean with English abstract) 

  8. Huo, C., Pan, C., Huo, L., and Zhou, Z. (2012), Multilevel SIFT matching for large-size VHR image registration, IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 2, pp. 171-175. 

  9. Kim, G.H., Sohn, H.G., Lee, J.O., and Lee, J.M. (2004), Surveying and Geo-Spatial Information Engineering : GCP Data Acquisition Using Image Chip Database, Journal of the Korean Society of Civil Engineers, Vol. 24, No. 6D, pp. 985-990. (in Korean with English abstract) 

  10. Kim, M., Jung, M., and Kim, Y. (2019), Histogram matching of Sentinel-2 spectral information to enhance Planetscope imagery for effective wildfire damage assessment, Korean Journal of Remote Sensing, Vol. 35, No. 4, pp. 517-534. 

  11. Lee, H., Seo, D., Ahn, K., and Jeong, D. (2013), Positioning accuracy analysis of KOMPSAT-3 satellite imagery by RPC adjustment, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 31, No. 6-1, pp. 503-509. (in Korean with English abstract) 

  12. Lee, K., Kim, E., and Kim, Y. (2017). Orthorectification of KOMPSAT optical images using various ground reference data and accuracy assessment, Journal of Sensors, Vol. 2017, pp. 1-14. 

  13. Lee, K.D. and Yoon, J.S. (2019), GCP chip automatic extraction of satellite imagery using interest point in North Korea, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, Vol. 37, No. 4, pp. 211-218. (in Korean with English abstract) 

  14. Li, P., Xu, H., and Guo, J. (2010), Urban building damage detection from very high resolution imagery using OCSVM and spatial features, International Journal of Remote Sensing, Vol. 31, No. 13, pp. 3393-3409. 

  15. Lim, Y.J., Kim, M.G., Kim, T., and Cho, S.I. (2004), Automatic precision correction of satellite images using the GCP chips of lower resolution, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, 20-24 September, Anchorage, AK, US, Vol. 2, pp. 1394-1397. 

  16. Ling, X., Huang, X., Zhang, Y., and Zhou, G. (2020), Matching confidence constrained bundle adjustment for multi-view high-resolution satellite images, Remote Sensing, Vol. 12, No. 1, p. 20. 

  17. Lowe, D. (2004), Distinctive image features from scaleinvariant keypoints, International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110. 

  18. Oh, J. and Lee, C. (2015), Automated bias-compensation of rational polynomial coefficients of high resolution satellite imagery based on topographic maps, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 100, pp. 14-22. 

  19. Park, S.H., Jung, H.S., Lee, M.J., Lee, W.J., and Choi, M.J. (2019), Oil spill detection from PlanetScope satellite image: application to Oil spill Accident near Ras Al Zour area, Kuwait in august 2017, Journal of Coastal Research, Vol. 90, No. SI, pp. 251-260. 

  20. Pehani, P., Cotar, K., Marsetic, A., Zaletelj, J., and Ostir, K. (2016), Automatic geometric processing for very high resolution optical satellite data based on vector roads and orthophotos, Remote Sensing, Vol. 8, No. 4, p. 343. 

  21. Planet. (2020), Planet imagery product specifications, planet.com, https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (last date accessed: 18 July 2020). 

  22. Saito, K., Spence, R. J., Going, C., and Markus, M. (2004), Using high-resolution satellite images for post-earthquake building damage assessment: a study following the 26 January 2001 Gujarat earthquake, Earthquake spectra, Vol. 20, No. 1, pp. 145-169. 

  23. Shin, J. K., Lee, Y. J., Kim, G. J., and Lee, J. H. (2015), Assessment of possibility of adopting the error tolerance of geometric correction on producing 1/5,000 Digital Topographic Map for inaccessible area using the PLEIADES images and TerraSAR control point, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 2, pp. 83-94. (in Korean with English abstract) 

  24. SI Imaging Services (2019a), KOMPSAT-3 Image Data Manual v2.1, SI Imaging Services, Korea, http://www.siimaging.com/resources/?pageid2&uid336&moddocument (last date accessed: 13 October 2019). 

  25. SI Imaging Services (2019b), KOMPSAT-3A Image Data Manual v1.5, SI Imaging Services, Korea, http://www.siimaging.com/resources/?pageid2&uid337&moddocument (last date accessed: 13 October 2019). 

  26. Tong, X., Hong, Z., Liu, S., Zhang, X., Xie, H., Li, Z., Yang, S., Wang, W., and Bao, F. (2012), Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 Wenchuan earthquake, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 68, pp. 13-27. 

  27. Wang, T., Zhang, G., Li, D., Tang, X., Jiang, Y., Pan, H., and Zhu, X. (2014), Planar block adjustment and orthorectification of ZY-3 satellite images, Photogrammetric Engineering & Remote Sensing, Vol. 80, No. 5, pp. 559-570. 

  28. Wicaksono, P. and Lazuardi, W. (2018), Assessment of PS images for benthic habitat and seagrass speciesmapping in a complex optically shallow water environment, International Journal of Remote Sensing, Vol. 39, No. 17, pp. 5739-5765. 

  29. Ye, Y. and Shan, J. (2014), A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 90, pp. 83-95. 

  30. Yeom, J., Jung, M., and Kim, Y. (2017), Detecting damaged building parts in earthquake-damaged areas using differential seeded region growing, International Journal of Remote Sensing, Vol. 38, No. 4, pp. 985-1005. 

  31. Yi, Z., Zhiguo, C., and Yang, X. (2008), Multi-spectral remote image registration based on SIFT, Electronics Letters, Vol. 44, No. 2, pp. 107-108. 

  32. Yoon, W.S. (2019), A Study on Development of Automatic GCP Matching Technology for CAS-500 Imagery, Master's thesis, Inha University, Incheon, Korea, 57p. (in Korean with English abstract) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로