$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이배체 및 삼배체 전복(Haliotis discus hannai) 치패에서 주요 열충격 단백질 유전자들(heat shock protein genes)의 발현 특징
Expression Pattern of Major Heat Shock Protein Genes in Diploid and Triploid Abalone Haliotis discus hannai Juveniles 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.53 no.4, 2020년, pp.515 - 523  

박철지 (국립수산과학원 육종연구센터) ,  김은정 (부경대학교 해양바이오신소재학과) ,  남윤권 (부경대학교 해양바이오신소재학과)

Abstract AI-Helper 아이콘AI-Helper

Basal and heat shock-induced mRNA expression patterns of major heat shock protein (HSP) genes, including those encoding heat shock protein (HSP) 90, HSP70, HSP70-12A, heat shock inducible protein 70 (HSIP70), heat shock binding protein 1 (HSPBP1), HSP60, and HSP40 were examined in the gill and hepat...

주제어

표/그림 (4)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이에 본 연구는 배수체 전복의 고수온 노출에 대한 생리 반응 특징을 평가하기 위한 연구의 일환으로 전복에서 발굴된 바 있는 주요 HSP 유전자들을 대상으로 일반 2배체 대조군 및 3배체 전복 치패에서 기초 발현 및 고수온 자극에 대한 유도 발현 특징을 조사하고자 하였다.

가설 설정

  • (A) Fold changes of induced expression at the end of heat shock treatment relative to 19ºC-control group. (B) Relative end-point expression levels normalized. In (A) and (B), asterisks indicate the statistical difference between diploid and triploid groups based on Student’s t-test at P<0.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
전복양식에서 문제를 야기시키는 여러 환경 요인으로는 무엇이 있나? 전복양식에서 문제를 야기시키는 여러 환경 요인들 중 지구온난화와 관련한 수온의 증가와 여름철 고수온 환경의 장기간 유지가 최근 전복 양식의 생산성을 저하시키는 주요 환경 요인들로 주목 받고 있으며, 때문에 고수온 충격 또는 고수온 노출에 대한 전복의 생리 반응에 대한 분자 메커니즘을 이해하기 위한 여러 연구들이 이루어지고 있다(Chen et al., 2019; Kyeong et al.
3배체 유도 기술이 불임 효과를 통한 부가적인 경제 형질의 차등 발현을 유도하거나 인위적으로 형성한 육종 계통 또는 유전자변형 계통의 생식학적 제어 (reproductive confinement) 전략으로써 그 가능성을 인정받는 이유는 무엇인가? 유도된 3배체(triploidy)는 일반적인 2배체(diploidy)에 비해서 1.5배 증가된 genome 크기를 갖도록 설계된 개체로서 2배체와 달리 3개의 상동염색체를(homologous chromosomes) 보유하게 되므로 제1감수분열(meiosis I)에서 상동염색체들간의 등 분할이 어렵기 때문에 감수분열의 지연 또는 억제에 따른 소위 불임 효과(sterility effect)의 유도된다(Piferrer et al., 2009; Dheilly et al.
무엇을 통해 전복의 양식생산고의 많은 양적 성장을 이루었는가? 전복(Haliotis discus hannai)은 우리나라 주요 해산 양식 패류 종으로서 2000년대에 들어 인공종묘생산 기술의 발달과 해상 가두리 양식 방법의 이용을 통해 양식생산고의 많은 양적 성장이 이루어진 바 있다(Park and Kim, 2013). 그러나 최근 들어 여름철 고수온 환경의 심화에 따른 생존율 저하 및 빈번한 질병 유발 등 국내 전복 양식의 단위 노력 당 생산성은 점차 저하되고 있는 실정이며, 이에 전복의 양식 생산성 개선을 위해 선발 육종을 위시하여 여러 육종 연구들이 추진되고 있고, 그 일환으로서 염색체 공학을 이용한 삼배체(triploidy) 전복의 개발과 경제 형질의 평가가 진행되고 있다(Park et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. Anderson JD. 2010. Mitochondrial DNA dosage effects in triploid grass carp. N Am J Aquacult 72, 177-183. https://doi.org/10.1577/A09-052.1. 

  2. Benfey TJ and Devlin RH. 2018. Ploidy has minimal effect on hypoxia tolerance at high temperature in rainbow trout Oncorhynchus mykiss. Physiol Biochem Zool 91, 1091-1101. https://doi.org/10.1086/700218. 

  3. Bowden AJ, Andrewartha SJ, Elliott NG, Frappell PB and Clark TD. 2018. Negligible differences in metabolism and thermal tolerance between diploid and triploid Atlantic salmon Salmo salar. J Exp Biol 221, jeb166975. http://doi.org/10.1242/jeb.166975. 

  4. Brokordt KB, Gonzalez RC, Farias WJ and Winkler FM. 2015. Potential response to selection of HSP70 as a component of innate immunity in the abalone Haliotis rufescens. PLoS One 10, e0141959. http://doi.org/10.1371/journal.pone.0141959. 

  5. Chen N, Huang Z, Lu C, Shen Y, Luo X, Ke C and You W. 2019. Different transcriptomic responses to thermal stress in heat-tolerant and heat-sensitive Pacific abalones indicated by cardiac performance. Front Physiol 9, 1895. https://doi.org/10.3389/fphys.2018.01895. 

  6. Cheng P, Liu X, Zhang G and He J. 2007. Cloning and expression analysis of a HSP70 gene from Pacific abalone Haliotis discus hannai. Fish Shellfish Immun 22, 77e87. http://doi.org/10.1016/j.fsi.2006.03.014. 

  7. Dheilly NM, Jouaux A, Boudry P, Favrel P and Lelong C. 2014. Transcriptomic profiling of gametogenesis in triploid pacific oysters Crassostrea gigas: Towards an understanding of partial sterility associated with triploidy. PLoS One 9, e112094. https://doi.org/10.1371/journal.pone.0112094. 

  8. Dubey A, Prajapati KS, Swamy M and Pachauri V. 2015. Heat shock proteins: a therapeutic target worth to consider. Vet World 8, 46-51. http://doi.org/10.14202/vetworld.2015.46-51. 

  9. Farcy E, Serpentini A, Fievet B and Lebel J. 2007. Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: Transcriptional induction in response to thermal stress in hemocyte primary culture. Comp Biochem Phys B 146. 540-550. http://doi.org/10.1016/j.cbpb.2006.12.006. 

  10. Ghosh JC, Siegelin MD, Dohi T and Altieri DC. 2010. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70, 8988-8993. https://doi.org/10.1158/0008-5472.CAN-10-2225. 

  11. Hellemans J, Mortier G, De Paepe A, Speleman F and Vandesompele J. 2007. qBase relative quantification framework and software for management and automated analysis of realtime quantitative PCR data. Genome Biol 8, R19. https://doi.org/10.1186/gb-2007-8-2-r19. 

  12. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B and Hightower LE. 2009. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105-111. http://doi.org/10.1007/s12192-008-0068-7. 

  13. Kim EJ, Kim SJ, Park CJ and Nam YK. 2019. Characterization of testis-specific serine/threonine kinase 1-like (TSSK1-like) gene and expression patterns in diploid and triploid Pacific abalone (Haliotis discus hannai; Gastropoda; Mollusca) males. PLoS One 14, e0226022. https://doi.org/10.1371/journal.pone.0226022. 

  14. Koll H, Guiard B, Rassow J, Ostermann J, Horwich AL, Neupert W and Hartl F. 1992. Antifolding activity of hsp60 couples protein import into the mitochondrial matrix with export to the intermembrane space. Cell 68. 1163-1175. https://doi.org/10.1016/0092-8674(92)90086-R. 

  15. Kregel KC. 2002. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92, 2177-2186. http://doi.org/10.1152/japplphysiol.01267.2001. 

  16. Kyeong D, Kim J, Shin Y, Subramaniyam S, Kang BC, Shin EH, Park EH, Noh ES, Kim YO, Park JY and Nam BH. 2020. expression of heat shock proteins in thermally challenged Pacific abalone Haliotis discus hannai. Genes 11, 22. http://doi.org/10.3390/genes11010022. 

  17. Lee SY and Nam YK. 2016. Evaluation of reference genes for RT-qPCR study in abalone Haliotis discus hannai during heavy metal overload stress. Fish Aquatic Sci 19, 21. http://doi.org/10.1186/s41240-016-0022-z. 

  18. Lee SY, Park C and Nam YK. 2019. assessment of suitable reference genes for rt-qpcr normalization with developmental samples in Pacific abalone Haliotis discus hannai. J Anim Reprod Biotechnol 34, 280-291. https://doi.org/10.12750/JARB.34.4.280. 

  19. Martin J, Horwich AL and Hartl FU. 1992. Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science 258, 995-998. https://doi.org/10.1126/science.1359644. 

  20. Nam BH, Kwak W, Kim YO, Kim DG, Kong HJ, Kim WJ, Kang JH, Park JY, An CM, Moon JY, Park CJ, Yu JW, Yoon J, Seo M, Kim K, Kim DK, Lee S, Sung S, Lee C, Shin Y, Jung M, Kang BC, Shin GH, Ka S, Caetano-Anolles K, Cho S and Kim H. 2017. Genome sequence of pacific abalone Haliotis discus hannai: the first draft genome in family Haliotidae. Gigascience 6, gix014. https://doi.org/10.1093/gigascience/gix014. 

  21. Park CJ and Kim SY. 2013. Abalone aquaculture in Korea. J Shellfish Res 32, 17-19. https://doi.org/10.2983/035.032.0104. 

  22. Park CJ, Kwon MS, Kim EJ and Nam YK. 2018. Improvement of cold-shock treatment conditions for triploidy induction in Pacific abalone Haliotis discus hannai. Korean J Malacol 34, 191-200. https://doi.org/10.9710/kjm.2018.34.4.191. 

  23. Piferrer F, Beaumont A, Falguiere JC, Flajshans M, Haffray P and Colombo L. 2009. Polyploid fish and shellfish: Production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 293, 125-156. https://doi.org/10.1016/j.aquaculture.2009.04.036. 

  24. Sambraus F, Remen M, Olsen RE, Hansen TJ, Waagbo R, Torgersen T, Lock EJ, Imsland A, Fraser TWK and Fjelldal PG. 2018. Changes in water temperature and oxygen: the effect of triploidy on performance and metabolism in large farmed Atlantic salmon. Aquacult Env Interac 10, 157-172. https://doi.org/10.3354/aei00260. 

  25. Saranyan PV, Ross NW and Benfey TJ. 2017. Erythrocyte heat shock protein responses to chronic (in vivo) and acute (in vitro) temperature challenge in diploid and triploid salmonids. Comp Biochem Physiol Part A 206, 95-104. http://dx.doi.org/10.1016/j.cbpa.2017.01.007. 

  26. Schmittgen TD and Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3, 1101-1108. https://doi.org/10.1038/nprot.2008.73. 

  27. Shiel BP, Hall NE, Cooke IR, Robinson NA and Strugnell JM. 2014. De novo characterisation of the greenlip abalone transcriptome Haliotis laevigata with a focus on the heat shock protein 70 (HSP70) family. Mar Biotechnol 17, 23-32. http://doi.org/10.1007/s10126-014-9591-y. 

  28. Shin EH, Park EH, Kim YO, Kim DG, Kong HJ, Kim WJ, Park JY and Nam BH. 2017. Molecular characterization and expression profiles of heat shock transcription factor HSF1 under heat stress in the Pacific abalone Haliotis discus hannai. Korean J Malacol 33, 243-251. https://doi.org/10.9710/kjm.2017.33.4.243. 

  29. Sun BG and Hu YH. 2016. A novel small heat shock protein of Haliotis discus hannai: characterization, structure modeling, and expression profiles under environmental stresses. Cell Stress Chaperones 21, 583-591. https://doi.org/10.1007/s12192-016-0683-7. 

  30. Van de Pol ILE, Flik G and Verberk WCEP. 2020. Triploidy in zebrafish larvae: Effects on gene expression, cell size and cell number, growth, development and swimming performance. PLoS One 15, e0229468. https://doi.org/10.1371/journal.pone.0229468. 

  31. Wan Q, Whang I and Lee J. 2012. Molecular and functional characterization of HdHSP20: A biomarker of environmental stresses in disk abalone Haliotis discus. Fish Shellfish Immun 33, 48e59. https://doi.org/10.1016/j.fsi.2012.03.034. 

  32. Wang N, Whang I, Lee J and Lee J. 2011. Molecular characterization and expression analysis of a heat shock protein 90 gene from disk abalone Haliotis discus. Mol Biol Rep 38, 3055-3060. http://doi.org/10.1007/s11033-010-9972-x. 

  33. Wiechmann K, Muller H, Konig S, Wielsch N, Svatos A, Jauch J, Werz O. 2017. Mitochondrial chaperonin HSP60 is the apoptosis-related target for myrtucommulone. Cell Chem Biol 24, 614-623. http://dx.doi.org/10.1016/j.chembiol.2017.04.008. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로