$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한국 난온대 식생분포대의 식물기후학적 재검토
A Phytoclimatic Review of Warm-temperate Vegetation Zone of Korea 원문보기

생태와 환경 = Korean journal of ecology and environment, v.53 no.2, 2020년, pp.195 - 207  

엄병철 (계명대학교 생명과학전공) ,  김종원 (서식처생태학.식물사회학연구소)

초록
AI-Helper 아이콘AI-Helper

난온대 동백나무군강의 한국 내 분포 북한계는 연평균 기온 13℃와 14℃, 한랭지수 -10℃로 제안된 바 있다. 본 연구는 이들 기후요소의 지리적 공간분포 실체를 검토하였다. 세 기후요소의 공간분포 양상은 티센망법과 크리깅법으로 분석하였으며, 세 가지 기후도를 생산하여 난온대 주요 상록활엽수종의 현존분포와 그 대응성을 비교·분석하였다. 결과로 난온대 식생의 분포 북한계는 한랭지수 -10℃가 연평균기온 14℃보다 일치하였으나, 연평균기온 13℃가 더욱 정교한 일치를 보여주었다. 한반도에서 연평균기온 13℃를 북한계로 한 난온대 식생역의 잠재 분포 면적은 20,334 ㎢로 다른 두 온도요소의 경우보다 넓었다. 본 연구는 가공하지 않은 직접 기후요소인 연평균기온 13℃가 가공으로부터 생겨난 간접 기후요소인 한랭지수 -10℃보다 난온대 식생 분포 북한계에 대응하는 특정 온도 요소인 것으로 밝혀졌다. 더불어 식물구계학적 특정종의 평가 기준으로 사용되는 난온대 경계선에 대한 학술적 재고의 필요성이 대두되었다.

Abstract AI-Helper 아이콘AI-Helper

In Korea, specific thermal elements such as annual mean temperature (AMT) 13℃, 14℃, and Kira's coldness index (CI) -10℃, have been suggested about the northernmost distribution of the warm-temperate evergreen broad-leaved forest zone. We reviewed the relationship between three t...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 각각의 온도요소에 대하여 식물기후도를 생산하고, 난온대 지표성의 벤치마킹 식물종 및 식생에 대한 실제 분포양상을 비교·분석함으로써 난온대 식생의 북한계 분포에 대응하는 특정 온도요소를 밝히고자 하였다.
  • 난온대 동백나무군강의 한국 내 분포 북한계는 연평균 기온 13℃와 14℃, 한랭지수 -10℃로 제안된 바 있다. 본 연구는 이들 기후요소의 지리적 공간분포 실체를 검토 하였다. 세 기후요소의 공간분포 양상은 티센망법과 크리깅법으로 분석하였으며, 세 가지 기후도를 생산하여 난온대 주요 상록활엽수종의 현존분포와 그 대응성을 비교·분 석하였다.
  • 본 연구는 지구온난화에 대응하여 나타나는 냉온대를 포함한 한랭 식생대의 후퇴 및 축소, 그리고 난온대 식생의 확장에 관한 생태계 변화를 모니터링 하는 정량­정성적 방법과 수단을 뒷받침한다.
  • 따라서 한국에서 난온대 식생의 분포 북한계와 식물기후적 대응성에 관한 해상도 높은 해석은 난온대 식생과 기후 정보의 질적·양적 정교성에 크게 영향을 받을 수밖에 없다. 이러한 측면에서 본 연구는 그러한 식생 및 기후 정보의 정교성을 보완하기 위하여 빅데이터 자료의 가공과 컴퓨터 수리분석 기법을 고안함으로써 성취될 수 있었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
식생 분포 정보는 무엇으로부터 얻을 수 있는가? 최근 급속도로 발달한 컴퓨터 시뮬레이션은 식생 분포와 기후요소 같은 빅데이터의 수리분석을 더욱 용이하게 한다(Botti, 2018; Eom, 2019). 게다가 식생 분포 정보는 지리적 수치 정보(위도, 경도, 해발고도)를 포함하는 식물사회학적 식생자료(phytosociological relevé)로부터 얻을 수 있다(Kim and Lee, 2006). 지리 및 식생에 대한 정교한 정보를 포함하는 미가공(raw data) 식생자료의 생태학적 중요성을 일깨워주는 대목이다.
식물의 분포 한계는 일차적으로 무엇에 의해 결정되는가? 식물군락이나 식물종의 분포와 기후 환경의 상관관계는 초기 식물지리학에서 이미 주목받았던 생태학적 주제이다(Haeckel, 1886; Warming, 1909). 식물의 분포 한계는 일차적으로 온도요소에 의해 결정되고, 식물지리적 특정 온도요소에 관한 연구가 범지구적 수준에서 성취된 바도 있다(Köppen, 1918, 1936; Hopkins, 1938). 이러한 연구결과는 최근 지구온난화에 따라 북상 분포하는 남방분자의 미래 예측 연구에 중요한 바탕 정보가 된다(Chen and Chen, 2013; Engelbrecht and Engelbrecht, 2016).
연평균기온 13도에 의한 잠재적 난온대 식생 분포역의 면적은? 본 연구에서 밝혀진 한반도, 제주도, 울릉도 지역에서 난온대 식생의 현존분포 북한계와 가장 일치하는 온도요소는 연평균기온 13℃ 선이었다. AMT 13℃에 의한 잠재적 난온대 식생 분포역의 면적은 20,334 km2로 한국 전체의 약 19.2%였으나, 현재 남아 있는 식생 분포역의 대부분은 이차식생 또는 대상식생이고, 자연식생은 보호지역과 접근이 어려운 일부 지점에 점점이 남아있다(Kim, 1993; Choung and Hong, 2006).
질의응답 정보가 도움이 되었나요?

참고문헌 (95)

  1. Arguez, A. and R.S. Vose. 2011. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bulletin of the American Meteorological Society 92(6): 699-704. 

  2. Botti, D. 2018. A phytoclimatic map of Europe. Cybergeo: European Journal of Geography, Environnement, Nature, Paysage: document 867. 

  3. Box, E.O. and K. Fujiwara, eds. 2015. Warm-Temperate Deciduous Forests around the Northern Hemisphere. Springer, Cham. 

  4. Chen, D. and H.W. Chen. 2013. Using the Koppen classification to quantify climate variation and change: An example for 1901-2010. Environmental Development 6: 69-79. 

  5. Chiu, C.A., C.R. Chiou, J.R. Lin, P.H. Lin and C.T. Lin. 2014. Coldness index does not indicate the upper limit of evergreen broad-leaved forest on a subtropical island. Journal of Forest Research 19(1): 115-124. 

  6. Choi, B.K. 2012. Syntaxonomy and syngeography of warm-temperate evergreen broad-leaved forests in Korea. Keimyung University. Ph.D. Thesis. 

  7. Choung, H.L. and S.K. Hong. 2006. Distribution patterns, floristic differentation and succession of Pinus densiflora forest in South Korea: A perspective at nation-wide scale. Phytocoenologia 36(2): 213-229. 

  8. Engelbrecht, C.J. and F.A. Engelbrecht. 2016. Shifts in Koppen- Geiger climate zones over southern Africa in relation to key global temperature goals. Theoretical and Applied Climatology 123(1-2): 247-261. 

  9. Eom, B.C. 2019. Climatically potential natural vegetation and phytoclimatic map of Korea. Keimyung University. Ph.D. Thesis. 

  10. Eom, B.C. and J.W. Kim. 2017. Phytocoenosen and distribution of a wild tea (Camellia sinensis (L.) Kuntze) population in South Korea. Korean Journal of Plant Resources 30(2): 176-190. 

  11. ESRI (Environmental Systems Research Institute). 2005. Arc- GIS 9.1. ESRI press, Redlands. 

  12. Forman, R.T.T. 1995. Land Mosaics: The Ecology of Landscapes and Regions. Cambridge University Press, Cambridge. 

  13. Franklin, J. 1995. Predictive vegetation mapping: Geographic modeling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography 19(4): 474-499. 

  14. Fukata, H., N. Watanabe, N. Kajihara and J. Tsukamoto. 2005. Altitudinal zoning of understory vegetation in planted Hinoki cypress (Chamaecyparis obtusa Endl.) forest from the view of surface soil erosion control. Japanese Journal of Forest Environment 47(2): 77-84. 

  15. Haeckel, E. 1866. Generelle morphologie der organismen: Allgemeine grundzuge der organischen formen-wissenschaft, mechanisch begrundet durch die von Charles Darwin reformirte descendenz-theorie. Vol. 2. G. Reimer, Berlin. 

  16. Hong, H.H., J.W. Jang, E.M. Sun, B.A. Kim, S.J. Kim, S.R. Seo and H.T. Im. 2013. Floristic study of Mt. Mudeung. Korean Journal of Environmental Biology 31(2): 121-153. 

  17. Hopkins, A.D. 1938. Bioclimatics: A Science of Life and Climate Relations. U.S. Dept. of Agriculture, Washington D.C. 

  18. Hyun, J.O., H.R. Na, K. Park, J.W. Kim, H.T. Im, J.M. Hwang, Y.B. Jo, H.B. Song, S.C. Lee, O.S. Jung and H.S. Oh. 2012. The 4th Nationwide Survey Guideline for Natural Environment. National Institute of Environmental Research, Incheon. 

  19. Ichter, J., D. Evans and D. Richard. 2014. Terrestrial habitat mapping in Europe: An overview. European Environment Agency, Copenhagen. 

  20. Kang, H.M. 2019. Vegetation characteristics of evergreen broadleaved forest in the Duryunsan Provincial Park: Focusing on the Daeheungsa (Temple) Area. Korean Journal of Ecology and Environment 33(5): 552-564. 

  21. Kang, J.T., J.H. Jeon and Y.M. Son. 2016. The prediction of the optimal growth site and estimation of carbon stocks for Castanopsis sieboldii (Makino) Haus in warm temperate zone by climate change: Focused on Wando island. The Journal of Korean Island 28(2): 273-294. 

  22. KDPA (Korea Database on Protected Areas). 2018. Protected Area. ME (Ministry of Environment). http://www.kdpa.kr (accessed Aug. 14, 2018). 

  23. KHOA (Korea Hydrographic and Oceanographic Agency). 2013. Approximate highest high water level. MOF (Ministry of Oceans and Fisheries). 2013. 

  24. Kil, B.S. and J.U. Kim. 1999. Syntaxonomy of evergreen broadleaved forests in Korea. Korean Journal of Environmental Biology 17(3): 233-247. 

  25. Kim, C.H. 2000a. Assessment of natural environment: 1. Selection of plant taxa. Korean Journal of Environmental Biology 18(1): 163-198. 

  26. Kim, C.H., M.O. Moon, J.K. Ahn, I.C. Hwang, S.H. Lee, S.S. Choi, J.H. Lee, et al. 2018. Floristic target species (FT species) in Korea. National Institute of Ecology, Seocheon. 

  27. Kim, C.M. 2000b. Forest zone. pp. 26-29. In: Forest & Forestry Technique (Kim, Y.H., ed.). Korea Forest Service, Daegeon. 

  28. Kim, D.C. and Y.J. Chung. 2011. The flora of Mt. Cheongwan. Korean Journal of Environment and Ecology 25(3): 253-266. 

  29. Kim, J.H. and I.S. Jang. 1997. A study on the vegetation of Mokdo Island (Ulsan Metropolitan City). Natural Science (Taejon University) 8(2): 103-113. 

  30. Kim, J.U. and Y.J. Yim. 1987. Actual vegetation and potential natural vegetation of Seonunsan area, Southwestern Korea. The Korean Journal of Ecology 10(4): 159-164. 

  31. Kim, J.W. 1990. A syntaxonomic scheme for the deciduous oak forests of South Korea. Abstracta Botanica 14: 51-81. 

  32. Kim, J.W. 1992. Vegetation of Northeast Asia: On the syntaxonomy and syngeography of the oak and beech forests. University of Vienna. Ph.D. Thesis. 

  33. Kim, J.W. 1993. A review of the current state of green environment in the republic of Korea. Korea Environment Institute, Seoul. 

  34. Kim, J.W. 2004. Vegetation ecology. 1st ed. World Science, Seoul. 

  35. Kim, J.W. and B.K. Choi. 2012. Discovering the essence of the Korean vegetation for field excursion. World Science, Seoul. 

  36. Kim, J.W., B.C. Eom, J.A. Lee, J.S. Park, Y.H. Kim and G.Y. Lee. 2019. A floristically-designated species, i.e. floristic target species: An ecological paradox of what's conservation validity of important plant species. p. 66. In: The 74th Annual Meeting of the Korean Association of Biological Sciences. The Korean Association of Biological Science, Seogwipo. 

  37. Kim, J.W., J.A. Lee, J.C. Lim and S.Y. Hwang. 2011. The origin and preservation of relic forests and confucianism in Korea. Acta Koreana 14: 195-223. 

  38. Kim, J.W. and Y.K. Lee. 2006. Classification and assessment of plant communities. World Science, Seoul. 

  39. Kim, Y.H. and J.W. Kim. 2017. Distributional uniqueness of deciduous oaks (Quercus L.) in the Korean Peninsula. Journal of the Korean Society of Environmental Restoration Technology 20(2): 37-59. 

  40. Kira, T. 1945. A new classification of climate in Eastern Asia as the basis for agricultural geography. Horticultural Institute Kyoto University, Kyoto. 

  41. Kira, T. 1948. On the altitudinal arrangement of climatic zones in Japan: A contribution to the rational land utilization in cool highlands. Kanti-Nogaku 2: 143-173. 

  42. Kira, T. 1991. Forest ecosystems of East and Southeast Asia in a global perspective. Ecological Research 6(2): 185-200. 

  43. Koppen, W. 1918. Klassification der klimate nach temperatur, niederschlag and jahreslauf. Petermanns Geographische Mitteilungen 64: 193-203. 

  44. Koppen, W. 1936. Das geographische system der klimate. Handbuch der klimatologie. Vol. 1, Part C. Gebruder Borntraeger, Berlin. 

  45. Korznikov, K.A., D.E. Kislov and P.V. Krestov. 2019. Modeling the bioclimatic range of tall herb communities in Northeastern Asia. Russian Journal of Ecology 50(3): 241-248. 

  46. Krestov, P.V. and Y. Nakamura. 2007. Climatic controls of forest vegetation distribution in Northeast Asia. Berichte der Reinhold-Tuxen-Gesellschaft 19: 131-145. 

  47. Lee, D.K., K.C. Kwon and K.S. Kang. 2017. Contribution of tree plantation, tree breeding and soil erosion control techniques developed during Saemaul Undong periods to the successful forest rehabilitation in the Republic of Korea. Journal of Korean Forest Society 106(4): 371-379. 

  48. Lee, H.W., H.L. Choung, C.H. Kim, J.O. Hyun and I.S. Jang. 2005. Categorization and conservation of the threatened plant species in environmental impact assessment. Korea Environment Institute, Seoul. 

  49. Lee, J.H. and B.H. Choi. 2010. Distribution and northernmost limit on the Korean Peninsula of three evergreen trees. Korean Journal of Plant Taxonomy 40(4): 267-273. 

  50. Lee, W.C. and Y.J. Yim. 1978. Studies on the distribution of vascular plants in the Korean Peninsula. Korean Journal of Plant Taxonomy 8(appendix): 245-277. 

  51. Lee, W.C. and Y.J. Yim. 2002. Phytogeography. Kangwon University Press, Chuncheon. 

  52. Li, C., B. Xiao, Q. Wang, R. Zheng and J. Wu. 2017. Responses of soil seed bank and vegetation to the increasing intensity of human disturbance in a semi-arid region of Northern China. Sustainability 9(10): 1-13. 

  53. Lim, D.O., Y.S. Kim and I.C. Hwang. 2006. Flora and conservation of Weolchulsan National Park. Korean Journal of Ecology and Environment 20(2): 130-142. 

  54. Lim, J.Y. 1965. Soil classification of Korea. Japanese Society of Pedology 9(2): 93-103. 

  55. Microsoft Corporation. 2019. Microsoft Office 365 Excel. Microsoft Corporation, Redmond. 

  56. Miyawaki, A., ed. 1967. Vegetation of Japan. Gakken, Tokyo. 

  57. Miyawaki, A. 1984. A vegetation-ecological view of the Japanese Archipelago. Bulletin of Institute of Environmental Science and Technology, Yokohama National University 11: 85-101. 

  58. Miyawaki, A. and S. Okuda, eds. 1990. Vegetation of Japan illustrated. Shibundo, Tokyo. 

  59. Miyawaki, A., S. Okuda and R. Fujiwara. 1994. Handbook of Japanese vegetation. Shibundo, Tokyo. 

  60. Mucina, L. 2010. Floristic-phytosociological approach, potential natural vegetation, and survival of prejudice. LAZAROA 31: 173-182. 

  61. Nakanishi, S. and T. Hattori. 1979. A Castanopsis type association of the setouchi district in Southwestern Japan. Bulletin of the Yokohama Phytosociological Society 16: 113-140 

  62. NGII (National Geographic Information Institute). 2017. Digital Map (1 : 5,000). NGII. http://www.ngii.go.kr/kor (accessed Apr. 5, 2017). 

  63. NMAJS and UJAST (NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team). 2009. ASTER Global Digital Elevation Model. NASA EOSDIS Land Processes DAAC. 

  64. Numata, M. 1984. The relationship between vegetation zones and climatic zones. Japanese Jounal of Biometeorology 21(1): 1-10. 

  65. Oh, H.K. and M.S. Beon. 2007. Characteristics distribution of vascular plants of the Moaksan Provincial Park. Korean Journal of Ecology and Environment 21(1): 38-46. 

  66. Oh, J.G. 1995. Comparative studies on evergreen broad-leaved forests of Dadohae National Marine Park in Korea and Nagasakigen in Japan. Mokpo National University. Ph.D. Thesis. 

  67. Oh, K.K. and Y.S. Kim. 1996. Restoration model of evergreen broad-leaved forests in warm temperate region (I): Vegetation structure. The Korean Journal of Ecology 10(1): 87-102. 

  68. Oh, S.Y. 1977. Floral and phytogeographical studies on the vascular plants of Korea. Nature and Life 7(1): 13-39. 

  69. Oliver, M.A. and R. Webster. 1990. Kriging: A method of interpolation for geographical information systems. International Journal of Geographical Information Systems 4(3): 313-332. 

  70. Park, C.M. 1998. Investigation on the inhabitation environments and growth conditions of Machilus thunbergii community in Pyonsanbando. Korean Journal of Environment and Ecology 12(3): 242-252. 

  71. Park, I.H., R.H. Kim and S.H. Lee. 1997. Ecology and morphological characteristics of leaves in natural populations of Camellia sinensis. Journal of the Korean Tea Society 3(2): 125-134. 

  72. Park, J.C., K.C. Yang and D.H. Jang. 2010. The movement of evergreen broad-leaved forest zone in the warm temperate region due to climate change in South Korea. Journal of Climate Research 5(1): 29-41. 

  73. Park, S.J. 2014. Generality and specificity of landforms of the Korean Peninsula, and its sustainability. Journal of the Korean Geographical Society 49(5): 656-674. 

  74. Sakai, A. 1975. Freezing resistance of evergreen and deciduous broad-leaf trees in Japan with special reference to their distributions. Japanese Journal of Ecology 25(2): 101-111. 

  75. Shin, J.H., Y.S. Jeon and J.W. Son. 2016. The study of distribution changing and community characteristics of Daphniphyllum macropodum (National Monument No. 91) in Naejangsan National Park. Journal of the Korea Society of Environmental Restoration Technology 19(3): 45-57. 

  76. Suzuki, S.I. 2001. A phytosociological classification system of the Quercus serrata forests in Japan. Vegetation Science 18(2): 61-74. 

  77. Takeuchi, K., R.D. Brown, I. Washitani, A. Tsunekawa and M. Yokohari, eds. 2003. Satoyama: The traditional rural landscape of Japan. Springer, Tokyo. 

  78. Thiessen, A.H. 1911. Precipitation averages for large areas. Monthly Weather Review 39(7): 1082-1084. 

  79. Tuxen, R. 1956. Die heutige potentielle naturliche vegetation als gegenstand der vegetationskartierung. Angewandte Pflanzensoziologie 13: 4-42. 

  80. Warming, E. 1909. Oecology of plants. Clarendon Press, Oxford. 

  81. WMO (World Meteorological Organization). 2017. WMO guidelines on the calculation of climate normals. WMO, Geneva. 

  82. Woo, S.Y. 2016. The development of South Korea in the after- war order and the eco-recovery. Studies on Life and Culture 40: 89-126. 

  83. Yamanaka, T. 1969. The forest and scrub vegetation in limestone areas of Shikoku, Japan. Vegetatio 19(1/6): 286-307. 

  84. Yang, I.S. and W. Kim. 1972. Conspectus relation between the distribution of evergreen broad-leaved trees and the climatic fators in southern area of Korea. Korean Journal of Plant Taxonomy 4(1): 11-18. 

  85. Yang, K.C. 2002. Classification of major habitats based on the climatic conditions and topographic features in Korea. Chung-Ang University. Ph.D. Thesis. 

  86. Yang, K.C. and J.K. Shim. 2007. Distribution of major plant communities based on the climatic conditions and topographic features in South Korea. Korean Journal of Environmental Biology 25(2): 168-177. 

  87. Yasuda, Y. and K. Narita. 1981. Calculated thermal index maps for the reconstruction of past vegetation since the last glacial age in Japan. Geographical Review of Japan 54(7): 369-381. 

  88. Yim, Y.J. 1970. On the distribution of woody plant species in relation to the climatic conditions in Korea. The Research Journal 5(1): 315-336. 

  89. Yim, Y.J. 1977. Distribution of forest vegetation and climate in the Korean Peninsula: III. Distribution of tree species along the thermal gradient. The Ecological Society of Japan 27(3): 177-189. 

  90. Yim, Y.J. and T. Kira. 1975. Distribution of forest vegetation and climate in the Korean Peninsula: I. Distrubution of some indices of thermal climate. The Ecological Society of Japan 25(2): 77-88. 

  91. Yim, Y.J., K.S. Paik and N.J. Lee. 1991. The vegetation of Mt. Halla: A study of flora and vegetation. Chung-Ang University Press, Seoul. 

  92. Yoshino, M.T. 1968. Distribution of evergreen broad-leaved forests in Kanto District, Japan. Geographical Review of Japan 41(11): 674-694. 

  93. Yun, J.H., J.H. Kim, K.H. Oh and B.Y. Lee. 2011a. Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean Journal of Environment and Ecology 25(1): 47-56. 

  94. Yun, J.H., K. Nakao, C.H. Park, B.Y. Lee and K.H. Oh. 2011b. Change perdiction for petential habitats of warm-temperate evergreen broad-leaved trees in Korea by climate change. Korean Journal of Environment and Ecology 25(4): 590-600. 

  95. Yun, J.I., J.Y. Choi and J.H. Ahn. 2001. Seasonal trend of elevation effect on daily air temperature in Korea. Korean Journal of Agricultural and Forest Meteorology 3(2): 96-104. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로