$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Comparative Study of Tritium Analysis Method with High-Volume Counting Vial 원문보기

Journal of radiation protection and research, v.45 no.3, 2020년, pp.142 - 146  

Yoon, Yoon Yeol (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ,  Kim, Yongcheol (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)

Abstract AI-Helper 아이콘AI-Helper

Background: Tritium (3H) analysis in groundwater was difficult because of its low activity. Therefore, the electrolytic enrichment method was used. To improve the detection limit and for performing simple analysis, a high-volume counting vial with the available liquid scintillation counter (LSC) was...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, we used 145 mL vial available LSC for analyzing natural level tritium and electrolytic enrichment method was also applied for extremely low activity tritium measurement. And 3H analysis was compared with two kinds of LSC and counting vials.

대상 데이터

  • Tritium was analyzed with two kinds of LSC, one is Quantulus 1220 (PerkinElmer Inc., Waltham, MA, USA) and the other is AccuFLEX LSC-LB7 (Hitachi, Tokyo, Japan), and counting performance was compared with 20 mL and 145 mL Teflon lined polypropylene vial. These two instrument used guard counter for reducing the effects of external radiation, anti-coincidence signal detection and massive layer of lead but LSC-LB7 has been realized by the unique detector structure for counting with the vial up to 145 mL as well as 20 mL [11–13].
본문요약 정보가 도움이 되었나요?

참고문헌 (14)

  1. Firestone RB, Shirley VS. Table of isotopes. 8th ed. New York, NY: John Wiley & Sons Inc.; 1996. 

  2. Gusyev MA, Morgenstern U, Stewart MK, Yamazaki Y, Kashiwaya K, Nishihara T, et al. Application of tritium in precipitation and baseflow in Japan: a case study of groundwater transit times and storage in Hokkaido watersheds. Hydrol Earth Syst Sci. 2016;20:3043-3058. 

  3. Mayer A, Sultenfuss J, Travi Y, Rebeix R, Purtschert R, Claude C, et al. A multi-tracer study of groundwater origin and transit-time in the aquifers of the Venice region (Italy). Appl Geochem. 2014;50:177-198. 

  4. Subbotin SB, Aidarkhanov AO, Dubasov YV. Migration of tritium with underground waters on the former Semipalatinsk test site. Radiochemistry. 2013;55:557-565. 

  5. Ducros L, Eyrolle F, Vedova CD, Charmasson S, Leblanc M, Mayer A, et al. Tritium in river waters from French Mediterranean catchments: background levels and variability. Sci Total Environ. 2018;612:672-682. 

  6. Cook P, Herczeg AL. Environmental tracers in subsurface hydrology. New York, NY: Springer; 2000. 

  7. Von Buttlar H, Libby WF. Natural distribution of cosmic-ray produced tritium. II. J Inorg Nucl Chem. 1955;1:75-91. 

  8. International Atomic Energy Agency. Guidebook on nuclear techniques in hydrology (1983 Edition). Vienna, Austria: International Atomic Energy Agency; 1983. 

  9. Taylor CB. Tritium enrichment of environmental waters by electrolysis: development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors. Procedure and technique critique for tritium enrichment by electrolysis at the IAEA Laboratory; 1976 Nov 5; Seibersdorf, Austria. 

  10. Yoon Y, Lee K, Ko K. Development and validation of Ni-Ni electrolytic enrichment method for tritium determination in samples of underground waters of Jeju Island. J Radioanal Nucl Chem. 2010;286:591-595. 

  11. Tanaka R, Araki S, Mukai T, Yasuoka Y, Ohnuma S, Ishikawa T, et al. A simplified method for improved determination of radon concentration in environmental water samples. Radioisotopes (Tokyo). 2013;62:423-438. 

  12. Mullins S. A comparison of two liquid scintillation instruments for analysis of highly quenched samples. Proceedings of the Conference on Advances in Liquid Scintillation Spectrometry (LSC2017); 2017 May 1-5; Copenhagen, Denmark. 

  13. Feng B, Chen B, Zhuo W, Zhang W. A new passive sampler for collecting atmospheric tritiated water vapor. Atmos Environ. 2017;154:308-317. 

  14. Currie LA. Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem. 1968;40:586-593. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로