$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

폐금속광산 중금속오염토양에서 억새를 이용한 식물안정화공법을 위한 토양개량제 선정
Soil Neutralizer Selection for Phytostabilzation Using Miscanthus sinensis Anderss. in Heavy Metal Contaminated Soil of Abandoned Metal Mine 원문보기

자원환경지질 = Economic and environmental geology, v.53 no.5, 2020년, pp.517 - 528  

정문호 (한국광해관리공단 기술연구소) ,  지원현 (한국광해관리공단 기술연구소) ,  이진수 (한국광해관리공단 기술연구소) ,  양인재 (한국광해관리공단 기술연구소)

초록
AI-Helper 아이콘AI-Helper

본 연구는 폐금속광산의 중금속 오염 토양에서 억새를 이용한 식물안정화공법을 적용하기 위해 토양개량제 처리에 따른 토양내 중금속 이동성과 억새내 중금속 축적형태 등을 분석하여 적정 토양개량제를 선발하고자 수행하였다. 이를 위해 중금속 오염토양을 바닥재 1, 2%, 비산재 1, 2%, 폐석회+굴패각 1, 2%, AMDS 10, 20%, 퇴비 3.4% 등으로 처리하고, 비교를 위해 아무 처리를 하지 않은 대조구에 억새를 식재한 후 6개월을 재배하였다. Mehlich-3에 의한 토양내 중금속 함량, 억새 체내 중금속 이동형태 등을 분석한 결과 AMDS 20%가 식물안정화공법에 가장 효과적인 개량제로 선정되었으며, 2순위는 AMDS 10%가 선정되었다. 폐석회+굴패각, 바닥재와 비산재도 식물안정화공법적용 효과가 대조구에 비해 개선된 것으로 나타났다. 개량제 처리에 따라 일부 중금속의 토양내 유동성이 증가하는 결과를 보여, 실제 사업 적용을 위해 사전에 대상지역의 토양오염 특성을 분석하여 현장특성에 적합하게 토양개량제를 선정해야 할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Miscanthus sinensis Anderss. for phytostablization in heavy metal contaminated soil of abandoned metal mine. M. sinensis was cultivated for 6 months at contaminated ...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 식물정화공법 중 식물안정화공법을 목적으로 하여 이를 위한 대상수종으로 다년생 초본인 억새를 선정하였다. 억새는(M.
  • 본 연구는 폐금속광산 산성토양에서 억새를 이용한 식물안정화공법을 적용하기 위해 토양개량제에 따른 중금속 유동성, 억새내 중금속 축적형태 등을 규명하여 적정 토양개량제를 선발하기 위해 수행하였다.
  • 토양내 중금속의 유동성이 크면 흡수 효과가 상승하여 식물추출공법이나 식물휘발공법에는 효과적이지만, 식물안정화공법을 위해서는 토양내 중금속의 유동성이 작아야 효과적이다. 본 연구에서 개량제 처리에 따른 토양 중금속 유동성 변화가 중금속의 억새 지상부 축적에 어떠한 영향을 미치는 지를 확인하기 위해 토양내 중금속 Melich-3 농도와 억새 지상부내 중금속 농도 간 회귀분석을 실시하였다. 그 결과 중금속 5종 모두 Melich3 농도가 증가함에 따라 억새 지상부내 중금속 농도도 증가하는 것으로 나타났다.
  • , 2017) 기존의 여러 연구에서 식물정화공법에 적합한 수종으로 알려져 왔다(Zub and Brancourt Hulmel, 2010). 이에 따라 본 연구에서는 중금속으로 오염된 폐금속광산의 중금속 오염토양을 대상으로 토양개량제 사용에 따른 토양내 중금속의 이동성과 억새의 중금속 축적형태 등을 평가하여 식물안정화공법을 위한 적정 토양개량제를 선정하는데 목적이 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
본 연구는 폐금속광산 산성토양에서 억새를 이용한 식물안정화공법을 적용하기 위해 토양개량제에 따른 중금속 유동성, 억새내 중금속 축적형태 등을 규명하여 적정 토양개량제를 선발하기 위해 수행하였다, 이에 대한 수행 결과는? 1. 개량제 처리에 따른 중금속 안정화 효율은 AMDS 10%와 20%가 가장 높았으며, 폐석회+굴패각 1%와 2%는 Cd, Cu, Zn에 대해 효율적이었다. 2. 억새 체내 중금속 축적형태는 대부분 지상부보다 지하부에 축적되는 것으로 나타났으며, 토양내에서 억새 체내로의 이동성을 분석한 결과 폐석회+굴패각 1%와 퇴비가 이동성이 가장 낮았고, AMDS 10%와 폐석회+굴패각 2%가 그 다음으로 낮은 결과를 보였다. 3. 억새의 생육과 토양내 생물학적 유호도, 억새의 중금속 축적형태 등을 종합적으로 고려한 결과 식물안정화공법에 AMDS 20%가 가장 효과적이었으며, AMDS 10%가 2순위로 선정되었다.
한국 내 휴폐금속광산은 몇 개소가 있는가? 한국 내 휴폐금속광산은 2,106개소인데 이중 금은이 1692개소로 가장 많고, 그 밖에 철, 망간, 연, 아연 광산 등이 많이 분포하고 있다(MIRECO, 2019). 이들 광산을 개발하면서 발생하는 광폐석은 중금속(As, Cd, Cu, Pb, Zn) 함량이 높기 때문에 광폐석이나 광폐석에서 발생하는 침출수가 주변 농경지나 하천 등으로 유입되면 토양과 수질을 오염시켜 생태계를 파괴하게 된다(De Bartolomeo et al.
광폐석의 악영향은 무엇인가? 한국 내 휴폐금속광산은 2,106개소인데 이중 금은이 1692개소로 가장 많고, 그 밖에 철, 망간, 연, 아연 광산 등이 많이 분포하고 있다(MIRECO, 2019). 이들 광산을 개발하면서 발생하는 광폐석은 중금속(As, Cd, Cu, Pb, Zn) 함량이 높기 때문에 광폐석이나 광폐석에서 발생하는 침출수가 주변 농경지나 하천 등으로 유입되면 토양과 수질을 오염시켜 생태계를 파괴하게 된다(De Bartolomeo et al., 2004; Miro et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (57)

  1. Adriano, D.C. (1986) Trace Elements in the Terrestrial Environment. Springer-Verlag, New York, 533p. 

  2. Atkinson, C.J. (2009) Establishing perennial grass energy crops in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy., v.33, p.752-759. 

  3. Baldaotoni, D., Leone, A.N., Iovieno, P., Morra, L., Zaccardelli, M. and Flfani, A. (2010) Total and available soil trace element concentrations in two Mediterranean agricutural systems treated with minucipal waste compost or conventional mineral fertilizers. Chemosphere., v.80, p.1006-1013. 

  4. Berti, W. R. and S.D. Cunningham. (2000). Phytostablization of metals. In "Phytostablization of Toxic Metals: Using Plants to Clean Up the Environment" (I. B. Raskin and D. Ensley, Eds.), Wiley, New York, pp.71-88. 

  5. Bolan, N.S., Park, J.H., Robinson, Naidu, B.R. and Huh, K.Y. (2011) Phytostablization: A Green Approach to Contaminant Containment. Adv. Agron., v.112, p.145-204. 

  6. Cheng, S.F. and Hseu, Z.Y. (2002) In-situ immobilization of cadmiun and lead by different amendments in to contaminated soils. Water Air Soil Pollut., v.140, p.73-84. 

  7. Chens, S. and Stephen. A.R. (2006) MISCANTHUS Andersson. Flora of China., v.22, p.581-583. 

  8. Cho, J.S., Ju, Y.K., Chang, Y.D. and Lee, C.H. (2010) Screening of useful plants for zinc phytoremideation in upland soils contaminated with heavy metals. Kor. J. Plnat Res. Abtr., v.5, p.114. 

  9. Cluis C. (2004) Junk-greedy greens: phytoremediation as a new option for soil decontamination. Biotech. J., v.2, p.60-67. 

  10. Cunningham, S.D. and Berti, W.R. (1997) Phytoextraction or phystabilization: technical, economic and regulatory considerations of the soil-lead issue. In N. Terry (de.) Proceedings of th 4th international conference on biogeochemistry of trace elements, Berkeley, Califonia, USA. 

  11. Cunningham, S.D., Berti, W.R. and Huang, J.W. (1995) Agronomics remediation of contaminated soils. Trends Bio. Sci., v.13, p.393-397. 

  12. Cunningham, S.D., Anderson, T.A., Schwab, A.P. and Hsu, F. (1996) Phytoremediation of soils contaminated with organic compounds. Adv. Agron., v.56, p.55-114. 

  13. DIN (Deutsches Institue fur Normung). (1995) Soil quality extraction of trace elements with ammonium nitrate solution. DIN 19730. Beuth Verlag. Berlin, Germany. 

  14. De Bartolomeo, A., Poletti, L., Sanchini, G., Sebastiani, B. and Morozzi, G. (2004) Relationship among parameters of lake polluted sediments evaluated by multivariate statistical analysis. Chemosphere, v.55, p.1323-1329. 

  15. Greef, J.M., Deuter, M., Jung, C. and Schondelmaier. J. (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet. Resour. Crop Ev., v.44, p.185-197. 

  16. Gomez-Sagasti, M.T., Alkorta, I., Becerril, J.M., Epelde, L., Anza, M. and Garbisu, C. (2012) Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water Air Soil Pollut., v.223, p.3249-3262. 

  17. Han, S.H., Hyun, J.O., Lee, K.J. and Cho. D.H. (1998) Accumulation of heavy metals(Cd, Cu, Zn, Pb) in five tree species in relation to contamination of soil near two closed-Zinc mining sites. Jour. Korean For. Soc., v.87, p.466-474. 

  18. Hong, S.H. and Cho. K.S. (2007) Effect of plants rhyzobacteria and physicochemical factor on the phytoremediation of contaminated soi. Kor. J. Micorbiol. Biotechnol., v.35, p.261-271. 

  19. Ju, Y.K., Kwon, H.J., Cho, J.S., Shin, S.L. and Kim. T.S. (2011) Growth and heavy metal absorption capacity of Miscanthus sinensis var. purpurascens RENDLE according to types of land use. Korean J. Plant Res., v.24, p.48-54. 

  20. Jung, M.H., Lee, J.S. and Ji. W.H. (2020) Soil Neutralizer Selection for Rehabilitation in the Acid Soil of Abandoned Metal Mine Using Miscanthus sinensis Anderss. Jour. Korean J. Soil. Sci. Fert., v.53, p.237-246. 

  21. Jung, M.H., Lee, S.H., Ji, W.H., Park. M.J. and Jung, K.H. (2016) Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine. Jour. Korean J. Soil. Sci. Fert., v.49, p.627-634. 

  22. Kim, H.J., Yang, J.E., Lee, J.Y. and Sang. H.J. (2006) Leaching characteristics of heavy metals from abandoned mines wastes in the Namhan River shore. Korean Soc. Soil Ground Water Envt., Annual Meetings, p.201-207. 

  23. Kim, K.R., Park, J.S., Kim, M.S., Koo, N.I., Lee, S.H., Lee, J.S., Kim, S.C., Yang, J.E. and J.G. Kim. (2010) Changes in heavy metal phytoavailablity by application of immobilizing agents and soil cover in upland soil nearby abandoned mining area subsequent metla uptake by red pepper. Soil Sci. Fert., v.43, p.864-871. 

  24. Kim, K.R., Naidu, R. and Kim, J.G. (2010) Utilization of biosolid for enhanced heavy metal removal and biomass production in contaminated soils. Korean J. Soil Sci. Fert., v.43, p.436-442. 

  25. Krishnamurti, G.S.R. and Naidu, R. (2000) Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Aust. J. Soil Research, v.38, p.991-1004. 

  26. Kumpiene, J., Lagerkvist, A. and Maurice, C. (2007) Stabilization of As, Cr, Cu, Pb and Zn in soils using amendments-A review. Waste Manage, v.28, p.215-225. 

  27. Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O. and Huisman, W. (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenerg., v.19, p.209-227. 

  28. Mac L.Q., Komarc, K.M., Tuc, C., Zhang, W.n Cai, Y. and Kenelly, E.D. (2001) A fern that hyper accumulates arsenic. Nature, v.409, p.579-582. 

  29. Mehlich, A. (1984) Mehlich-3 soil test extractant: A modifrcation of Mehlich 2 extractant' Commun. Soil Sci. Plant Anal., v.15, p.1409-1416. 

  30. Ministry of environment. (2016) Standard analytical methods for heavy metals in soils. http://www.law.go.kr/DRF/lawService.do?OCjaa806&targetadmrul&ID2100000036851&typeHTML&mobileYn. 

  31. Miro, M., Estela, J.M. and Cerda, V. (2004) Application of flowing stream techniques to water analysis Part III. Metal ions: Alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis. Talanta, v.63, p.201-223. 

  32. MIRECO. (2019) 2018 YEAR BOOK OF MIRECO STATISTICS MINE RECLAMATION CORP. Wonjusi, Kangwon-do, 354p. 

  33. Moreno, F.N., Anderson, C.W.N., Stewart, R.B. and Robinson, B.H. (2005) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ. Pollut., v.136, p.341-352. 

  34. Nagendran, R., Selvam, A., Joseph, K. and Chiemchaisri, C. (2006) Phytoremediation and rehabilitation of minicipal soild waste landfills and dump sites: A brief review, Waste Manage, v.26, p.1357-1369. 

  35. Nsanganwimana, F., Pourrut, B., Mench, M. and Douay, F. (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J. Environ. Manage, v.14, p.123-134 

  36. Oh, S.J., Kim, S.C., Kim, T.H., Yeon, K.H. Lee, J.S. and Yang. J.E. (2011) Determining kinetic parameters and stabilization efficiency of heavy metals with various chemical amendments. Soil Sci. Fert., v.44, p.1063-1070. 

  37. Oh, S.J., Kim, S.C., Kim, R.Y., Ok, Y.S., Yun, H.S. Oh, S.M. Lee, J.S. and Yang, J.E. (2012) Change of bioavailability in heavy metal contaminated soil by chemical amendment. Soil Sci. Fert., v.45, p.973-982. 

  38. Ok, Y.S., Kim, J.G. Yang, J.E., Kim, H.J., Yoo, K.Y., Park, C.J. and Chung, D.Y. (2004) Phytoremediation of heavy metal contaminated soil using transgenic plants. Korean J. Soi. Sci. Fert., v.37, p.396-406. 

  39. Panayotova, M. and Velikov, B. (2002) Kinetics of heavy metal ions removal by use of natural zeolite. J. Environ. Sci. Health, v.37, p.139-147. 

  40. Park, J.H., Panneerselvam, P., Lamb, D. Choppala, G. and Bolan, N.S. (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater., v.185, p.549-574. 

  41. Park, J.Y., Kim, J.Y., Lee, B.T., Kim, K.W. and Lee, J.S. (2010) Enhanced Phytoremediation by Echinochloa crus-galli in Arsenic Contaminated Soil in the Vicinity of the Abandeoned Mine. Econ. Environ. Goel., v.43, p.101-107. 

  42. Pulford, I.D. and Watson, C. 2003. Phytoremediation of heavy metal-contaminated land by trees-A review. Environ. Int., v.29, p.529-540. 

  43. Rezvani, M. and Zaefarian, F. (2011) Bioaccumulation and translocation factors of cadmium and lead in Aeluropus littoralis. AJAE, v.2, p.114-119. 

  44. Ross, S.M. 1994. Toxic Metals in Soil-Plant System. John Wiliy and Sons Ltd. New York, 469p. 

  45. Shin, S.G., Park, J.H., Jeon, J.O., Yun, T.L. and Yun, J.S. (2001) Effects of planting density on the growth fo Miscanthus sinensis var. purpurascens RENDLEin the flat bare land. J. Kor. Soc. People Plants Environ., v.4, p.15-20. 

  46. Seo, S.W. Moon, S.G., Choi, C.M. and Park. Y.K. (2005) Concentration of Zn, Cu, and Pb in soils and accumulation of Its in Plants around Abandoned Mine Vicinity. Journal of Life Science, v.15, p.826-833. 

  47. Song, Y.S., Moon, Y.H., Yu, G.D., Choi, I.S., Cha, Y.L. and Kim, K.S. (2018) Changes of Morphological and Growth Characteristics Collected Miscanthus Germplasm in Korea. Weed Turf. Sci., v.7, p.22-34. 

  48. Souki, K.S.A., Louvel, B., Douay, F. and Pourrut, B. (2017) Assessment of Miscanthus x giganteus capacity to restore the functionality of metal-contaminated soils: Ex situ experiment. Appl. Soil. Ecol., v.115, p.44-52. 

  49. Vangronsveld, J., V.F. Assche, and H. Clijsters. 1995. Reclamation of a bare industrial area contaminated by non-ferrous metals: In situ metal immobilization and revegetation. Environ. Pollut., v.87, p.51-59. 

  50. Viana, D.G., Pires, F.R., Ferreira, A.D., F, F.B.E., De Carvalho, C.F.M., Bonomo, R. and Martins, L.F. (2021) Effect of planting density of the macrophyte consortium of Typha domingensis and Eleocharis acutangula on ohytoremediation of barium from a flooded contaminated soil. Chemosphere, v.262, 127869. 

  51. Walworth, J.L., Gavlak, R.G. and Panciera. M.T. (1992) Mehlich 3 extractant for determination of available B, Cu, Fe, Mn, and Zn in cryic Alaskan soils. Can. J. Soil. Sci., v.72, p.517-526. 

  52. Wei, Z., Le, Q.V., Peng, W., Yang, Y., Yang, H., Gu, H., L, S.S. and S. C. (2021) A review on phytoremediation of contaminants in air, water and soil. J. Hazardous Materials, v.403, 123658. 

  53. Wong, M.H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, v.50, p.775-780. 

  54. Wu, Z.Z., Yang, J.Y., Zhang, Y.X., Wang, C.Q., Guo, S.S. and Yu, Y.Q. (2021) Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremedation. Ecotox. Envrion. Safe, v.207, 111297. 

  55. Yang. J.E., Skousen. J.G. Ok. Y.S., Yoo, K.Y. and Kim, H.J. (2006) Reclamation of abandeoned coal min waste in Korea using lime cake by-products. Mine Water Environ., v.25, p.227-232. 

  56. Yun, E.S., Park, S.H., Ko, J.Y., Jung, K.Y., Park, K.D. Hwang, J.B. and Park, C.Y. (2010) Vertical distribution of the heavy metal in paddy soils of below part at Gundong mine in milyang, Kora. Korean J. Soil Sci. Fert., v.43, p.468-473. 

  57. Zub, H.W. and Brancourt-Hulmel, M. (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron. Sust. Dev., v.30, p.201-214. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로