$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 나노방출제어시스템을 이용한 trichloroacetic acid와 epidermal growth factor 방출이 세포골격형성 유전자 발현에 미치는 영향 분석
Analysis of the effect of trichloroacetic acid and epidermal growth factor release on cytoskeleton gene expression using the nano-controlled releasing system 원문보기

대한치과보철학회지 = The journal of Korean academy of prosthodontics, v.58 no.4, 2020년, pp.290 - 299  

박미정 (강동경희대학교치과병원 보철과 경희대학교 치과대학 치과보철학교실) ,  이성복 (강동경희대학교치과병원 보철과 경희대학교 치과대학 치과보철학교실) ,  이석원 (강동경희대학교치과병원 보철과 경희대학교 치과대학 치과보철학교실)

초록
AI-Helper 아이콘AI-Helper

목적: 본 연구에서는 나노방출제어시스템을 이용하여 trichloroacetic acid (TCA) 및 epidermal growth factor (EGF)를 인간치은섬유아세포에 적용하였을 때, 나타나는 액틴 세포골격과 관련된 유전자 발현의 변화 양상을 확인하고자 하였다. 재료 및 방법: TCA와 EGF가 조절방출될 수 있도록 만들어진 나노방출제어시스템을 이용하였다. 인간치은섬유아세포에 TCA만 적용된 군(EXP1), TCA와 EGF가 적용된 군(EXP2), 대조군(CON)의 3가지 군으로 나누어 48시간 배양하였다. Real-time PCR을 이용하여 액틴 세포골격과 관련된 유전자 26개의 발현 양상을 분석하였다. 피어슨상관관계분석을 통해 유전자들의 상관관계와 영향요인을 확인하였다. 결과: 액틴 세포골격과 관련된 유전자 26개 중 23개가 EXP1과 EXP2에서 상향조절되었고, 이 중 14개는 EXP1에 비하여 EXP2에서 유의미한 발현량 증가를 보였다. LPAR1은 EXP1에서만 하향조절되었고, GNA13은 EXP2에서만 상향조절되었고, F2R은 EXP2에서만 하향조절되었다. 액틴 단백질의 유전자 발현에 대하여 Rac1관련 유전자 중 3개와 CDC42가 가장 큰 영향요인으로 확인되었다. 결론: 인간치은섬유아세포의 액틴 세포골격 관련 유전자들은 나노방출제어시스템을 통하여 조절 방출된 TCA와 EGF에 의해 대부분 상향조절되었다.

Abstract AI-Helper 아이콘AI-Helper

Purpose: Here, we verified that the actin cytoskeletal gene expression of human gingival fibroblasts was altered by the administration of trichloroacetic acid (TCA) and epidermal growth factor (EGF) using the nano-controlled releasing system. Materials and methods: The control and experimental group...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구의 목적은 TCA와 EGF를 HGC기반 나노방출제어시스템을 이용하여 인간치은섬유아세포에 조절방출 하였을 때, 액틴 세포골격과 관련된 유전자 발현의 변화양상을 규명하는데 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
chemical regeneration of skin scars는 어떤 치료법인가? 피부과에서 흔히 사용되는 피부재생치료 중 하나인 chemical regeneration of skin scars (CROSS)는 넓어진 모공 혹은 흉터에 고농도 trichloroacetic acid (TCA)를 단독으로 도포하거나 다른 물질과 혼합하여 도포하는 치료방법이다.7 피부과학에서와 달리, 치의학에서는 강산인 TCA의 구내 적용이 제한적일 수밖에 없다.
세포골격를 굵기에 따라 분류하면 어떤 종류로 나뉘는가? 세포골격은 섬유로 이루어진 그물형태의 세포 지지구조이다. 세포골격은 굵기에 따라 미세섬유(액틴 섬유, microfilament), 미세소관(microtubule) 및 중간섬유(intermediate filament)로 구성되어 있다. 이 중 가장 얇은 미세섬유는 액틴(actin) 단백질로 구성되어 있어 액틴 섬유라고도 불린다.
Rho 단백질군과 GTP의 결합에 의한 하위 인자들의 활성화가 세포형태에 영향을 미치는 예시에는 어떤 것들이 있는가? Rho 단백질군이 GTP (guanosine triphosphate)와 결합하여 활성화 상태가 되면, 하위 인자들(downstream effectors)이 활성화되고, 활성화되는 인자들에 따라 세포형태가 변하게 된다.4 예를 들어, RhoA가 활성화되면 액틴과 미오신 다발이 형성되고, 이 섬유다발은 세포의 국소접착(focal adhesion)에 관여한다. Rac1이 활성화되면 피막돌기(lamellipodia)같은, 액틴으로 이루어진 주름 모양의 돌출부가 형성된다. CDC42가 활성화되면 사상위족(filopodia)같은, 뾰족한 세포 돌출부가 형성된다.4 이외에도 Rho 단백질군은 세포내 함입, 유전자의 전사조절, 세포증식과 형질전환에 연관되어 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. Hardin J, Bertoni G, Kleinsmith LJ. Becker's World of the cell. 8th ed. New York: Pearson; 2015. p. 422-46. 

  2. Fishkind DJ, Wang YL. New horizons for cytokinesis. Curr Opin Cell Biol 1995;7:23-31. 

  3. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998;279:509-14. 

  4. Ridley AJ. Rho family proteins: coordinating cell responses. Trends Cell Biol 2001;11:471-7. 

  5. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420:629-35. 

  6. Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges T, Chant J, Hall A. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 1996;87:519-29. 

  7. Lee JB, Chung WG, Kwahck H, Lee KH. Focal treatment of acne scars with trichloroacetic acid: chemical reconstruction of skin scars method. Dermatol Surg 2002;28:1017-21. 

  8. Yasar S, Mansur AT, Serdar ZA, Goktay F, Aslan C. Treatment of focal epithelial hyperplasia with topical imiquimod: report of three cases. Pediatr Dermatol 2009;26:465-8. 

  9. Heithersay GS, Wilson DF. Tissue responses in the rat to trichloracetic acid-an agent used in the treatment of invasive cervical resorption. Aust Dent J 1988;33:451-61. 

  10. Park KM. A study based on sequential tissue coagulationproliferation nano controlled release system for oral soft tissue regeneration. Master's thesis. Department of Dentistry, Graduate School, Kyung Hee University. 2019. 

  11. Lee K. Evaluation of the effect on oral soft tissue regeneration of the trichloroacetic acid in cellular models-a gene expression profiling study, Master's thesis. Department of Dentistry, Graduate School, Kyung Hee University. 2018. 

  12. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factorinduced membrane ruffling. Cell 1992;70:401-10. 

  13. Yamamoto M, Marui N, Sakai T, Morii N, Kozaki S, Ikai K, Imamura S, Narumiya S. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene 1993;8:1449-55. 

  14. Caruz A, Samsom M, Alonso JM, Alcami J, Baleux F, Virelizier JL, Parmentier M, Arenzana-Seisdedos F. Genomic organization and promoter characterization of human CXCR4 gene. FEBS Lett 1998;426:271-8. 

  15. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987;56:615-49. 

  16. Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 1998;280(5372):2109-11. 

  17. Kiss C, Li J, Szeles A, Gizatullin RZ, Kashuba VI, Lushnikova T, Protopopov AI, Kelve M, Kiss H, Kholodnyuk ID, Imreh S, Klein G, Zabarovsky ER. Assignment of the ARHA and GPX1 genes to human chromosome bands 3p21.3 by in situ hybridization and with somatic cell hybrids. Cytogenet Cell Genet 1997;79:228-30. 

  18. Rath N, Olson MF. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012;13:900-8. 

  19. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 2010;50:157-86. 

  20. Yue R, Li H, Liu H, Li Y, Wei B, Gao G, Jin Y, Liu T, Wei L, Du J, Pei G. Thrombin receptor regulates hematopoiesis and endothelial-to-hematopoietic transition. Dev Cell 2012;22:1092-100. 

  21. Webb GC, Jenkins NA, Largaespada DA, Copeland NG, Fernandez CS, Bowtell DD. Mammalian homologues of the Drosophila Son of sevenless gene map to murine chromosomes 17 and 12 and to human chromosomes 2 and 14, respectively. Genomics 1993;18:14-9. 

  22. Goodsell DS. The molecular perspective: the ras oncogene. Oncologist 1999;4:263-4. 

  23. Tsuchida N, Ryder T, Ohtsubo E. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 1982;217:937-9. 

  24. Hu P, Mondino A, Skolnik EY, Schlessinger J. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 1993;13:7677-88. 

  25. Chan KT, Cortesio CL, Huttenlocher A. FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J Cell Biol 2009;185:357-70. 

  26. Janostiak R, Pataki AC, Brabek J, Rosel D. Mechanosensors in integrin signaling: the emerging role of p130Cas. Eur J Cell Biol 2014;93:445-54. 

  27. Mayer BJ, Hanafusa H. Association of the v-crk oncogene product with phosphotyrosine-containing proteins and protein kinase activity. Proc Natl Acad Sci USA 1990;87:2638-42. 

  28. Meller N, Merlot S, Guda C. CZH proteins: a new family of Rho-GEFs. J Cell Sci 2005;118:4937-46. 

  29. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P, Kossenkov AV, Showe LC, Liu Q, Vachani A, Albelda SM, Kissil JL. The Rac1 splice form Rac1b promotes K-rasinduced lung tumorigenesis. Oncogene 2013;32:903-9. 

  30. Ogorodnikov A, Levin M, Tattikota S, Tokalov S, Hoque M, Scherzinger D, Marini F, Poetsch A, Binder H, Macher- Goppinger S, Probst HC, Tian B, Schaefer M, Lackner KJ, Westermann F, Danckwardt S. Transcriptome 3'end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat Commun 2018;9:5331. 

  31. Egorov MV, Capestrano M, Vorontsova OA, Di Pentima A, Egorova AV, Mariggio S, Ayala MI, Tete S, Gorski JL, Luini A, Buccione R, Polishchuk RS. Faciogenital dysplasia protein (FGD1) regulates export of cargo proteins from the golgi complex via Cdc42 activation. Mol Biol Cell 2009;20:2413-27. 

  32. Qadir MI, Parveen A, Ali M. Cdc42: Role in cancer management. Chem Biol Drug Des 2015;86:432-9. 

  33. Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC. The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 2015;128:2009-19. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로