$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고분자 태양전지를 위한 비공액형 고분자 전해질
Non-Conjugated Polymer Electrolytes for Polymer Solar Cells 원문보기

공업화학 = Applied chemistry for engineering, v.31 no.5, 2020년, pp.467 - 474  

라마티아 피트리 빈티 나스룬 (부경대학교 고분자공학과) ,  사브리나 아우파 살마 (부경대학교 고분자공학과) ,  김주현 (부경대학교 고분자공학과)

초록
AI-Helper 아이콘AI-Helper

고분자태양전지는 용액공정에 의한 생산이 가능하여, 경량, 저비용, 기계적 유연성 및 고효율과 같은 많은 이점이 있다. 이들은 지난 수십 년 동안 많은 관심을 끌어왔다. 공액 고분자 전해질(conjugated polymer electrolyte, CPE) 및 비공액 고분자 전해질(non-conjugated polymer electrolyte, NPE) 재료는 기존의 금속 산화물 중간층과 관련된 일반적인 약점(전하 수집능력 저하 및 금속/고분자 계면에서의상용성 저하 등)을 극복하기 위해 사용되었다. 그러나 CPE의 합성은 매우 복잡한 합성과정이 필요하며, 대량합성이 어려운 단점이 있다. 따라서 상대적으로 합성이 용이한 NPE를 개발 혹은 기존에 개발되어 있는 NPE를 이용하면 보다 쉽게 단점을 극복할 수 있다. 이온 그룹이 포함되어 있는 경우 NPE는 특히 고분자 태양전지를 구현함에 있어 많은 이점을 제공할 수 있으며, 이에 본 총설에서는 그 동안 개발 혹은 응용되었던 NPE에 대한 내용을 다루었다.

Abstract AI-Helper 아이콘AI-Helper

Polymer solar cells have attracted extensive attention over the past decade due to their benefits, such as good solution-process-ability, light weight, low-cost, mechanically flexibility, and high efficiency. Conjugated (CPE) and non-conjugated (NPE) polyelectrolyte materials have been employed to a...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • The final chapter examines the emerging applications of NPEs in organic optoelectronic devices and details how the NPE molecular structure dictates the most relevant properties of these devices. The readers are encouraged to read this review for basic information and descriptions of the current work in this field of renewable energy research.
  • Various NPEs have attracted significant attention due to their more facile synthesis compared to that of CPEs, and their unique properties can be advantageous to PSC applications. This article has reviewed the design and synthesis pathways of NPEs, their electronic properties, and their application in PSCs. Alongside the development of NPEs, the structure-property relationships of NPEs and their influence on PSC performance warrant further investigation.
  • When PEIH+BIm4- was applied as the interfacial layer, the PCE was observed to increase as the interlayer thickness increased. This study demonstrates that using a variety of organic cathode interlayers in organic solar cells can result in unique properties emerging from each interlayer, which can lead to specific applications in the device field[43].
본문요약 정보가 도움이 되었나요?

참고문헌 (74)

  1. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics, 3, 649-653 (2009). 

  2. G. Zhang, Y. Fu, L. Qiu, and Z. Xie, Synthesis and characterization of thieno[3,4-c]pyrrole-4,6-dione and pyrrolo[3,4-c]pyrrole-1,4-dione-based random polymers for photovoltaic applications, Polymer, 53, 4407-4412 (2012). 

  3. C. A. Junwu and C. Yong, Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices, Acc. Chem. Res., 42, 1709-1718 (2009). 

  4. C. H. Woo, B. C. Thompson, B. J. Kim, M. F. Toney, and J. M. J. Frechet, The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance, J. Am. Chem. Soc., 130, 16324-16329 (2008). 

  5. G. Dennler, M. C. Scharber, and C. J. Brabec, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater., 21, 1323-1338 (2009). 

  6. H. Zhou, L. Yang, and W. You, Rational design of high performance conjugated polymers for organic solar cells, Macromolecules, 45, 607-632 (2012). 

  7. P. M. Beaujuge and J. M. J. Frechet, Molecular design and ordering effects in ${\pi}$ -functional materials for transistor and solar cell applications, J. Am. Chem. Soc., 133, 20009-20029 (2011). 

  8. C.-Y. Lee, B. S. Kim, K. H. Kim, Y. Yoon, M. W. Lee, D. H. Choi, M. J. Ko, H. Kim, D. K. Lee, and K. Kim, Synthesis and characterization of wide range light absorbing poly(dithieno[3,2-b:2',3'-d]thiophene-alt-3,6-bis(thiophen-2-yl)-2,5-di-n-octyl-pyrrolo[3,4-c]pyrrole-1,4-dione) for polymer solar cells, Synth. Met., 164, 64-68 (2013). 

  9. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, and M. Leclerc, Toward a rational design of poly(2,7-carbazole) derivatives for solar cells, J. Am. Chem. Soc., 130, 732-742 (2008). 

  10. G. Zhang, Y. Fu, Z. Xie, and Q. Zhang, Synthesis and photovoltaic properties of new low bandgap isoindigo-based conjugated polymers, Macromolecules, 44, 1414-1420 (2011). 

  11. J. L. Bredas, D. Beljonne, V. Coropceanu, and J. Cornil, Charge-transfer and energy-transfer processes in ${\pi}$ -conjugated oligomers and polymers: A molecular picture, Chem. Rev., 104, 4971-5003 (2004). 

  12. X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Enhanced performance in polymer solar cells by surface energy control, Adv. Funct. Mater., 20, 4381-4387 (2010). 

  13. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer, Adv. Mater., 23, 1679-1683 (2011). 

  14. F. C. Krebs, T. Tromholt, and M. Jorgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing, Nanoscale, 2, 873-886 (2010). 

  15. H. Schmidt, K. Zilberberg, S. Schmale, H. Flugge, T. Riedl, and W. Kowalsky, Transient characteristics of inverted polymer solar cells using titaniumoxide interlayers, Appl. Phys. Lett., 96, 2008-2011 (2010). 

  16. C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y. L. Loo, Transient photovoltaic behavior of air-stable, inverted organic solar cells with solution-processed electron transport layer, Appl. Phys. Lett., 94, 10-13 (2009). 

  17. H. Kang, S. Hong, J. Lee, and K. Lee, Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells, Adv. Mater., 24, 3005-3009 (2012). 

  18. C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G. C. Bazan, and Y. Cao, Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes, J. Mater. Chem., 20, 2617-2622 (2010). 

  19. H. S. Jung and T. Q. Nguyen, Electronic properties of conjugated polyelectrolyte thin films, J. Am. Chem. Soc., 130, 10042-10043 (2008). 

  20. S. I. Na, T. S. Kim, S. H. Oh, J. Kim, S. S. Kim, and D. Y. Kim, Enhanced performance of inverted polymer solar cells with cathode interfacial tuning via water-soluble polyfluorenes, Appl. Phys. Lett., 97, 4-7 (2010). 

  21. Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganas, and F. Zhang, Inverted and transparent polymer solar cells prepared with vacuum-free processing, Sol. Energy Mater. Sol. Cells, 93, 497-500 (2009). 

  22. T. T. Do, H. S. Hong, Y. E. Ha, G. E. Lim, Y. S. Won, and J. H. Kim, Investigation of the effect of conjugated oligoelectrolyte as a cathode buffer layer on the photovoltaic properties, Synth. Met., 198, 122-130 (2014). 

  23. A. R. Vancha, S. Govindaraju, K. V. L. Parsa, M. Jasti, M. Gonzalez-Garcia, and R. P. Ballestero, Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer, BMC Biotechnol., 4, 1-12 (2004). 

  24. S. Jaffar, K. T. Nam, A. Khademhosseini, J. Xing, R. S. Langer, and A. M. Belcher, Layer-by-layer surface modification and patterned electrostatic deposition of quantum dots, Nano Lett., 4, 1421-1425 (2004). 

  25. F. Yamauchi, K. Kato, and H. Iwata, Layer-by-layer assembly of poly(ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer, Langmuir, 21, 8360-8367 (2005). 

  26. S. Lee, S. Park, N. Sylvianti, H. K. Choi, and J. H. Kim, Cathode modification of polymer solar cells by electrostatically self-assembled zwitterionic non-conjugated polyelectrolyte, Synth. Met., 209, 441-446 (2015). 

  27. N. Sylvianti, T. T. Do, M. A. Marsya, J. Park, Y. C. Kang, and J. H. Kim, Self-assembled poly(4-vinylpyridine) as an interfacial layer for polymer solar cells, Bull. Korean Chem. Soc., 37, 13-18 (2016). 

  28. W. Lee, S. Jeong, C. Lee, G. Han, C. Cho, J. Y. Lee, and B. J. Kim, Self-organization of polymer additive, poly(2-vinylpyridine) via one-step solution processing to enhance the efficiency and stability of polymer solar cells, Adv. Energy Mater., 7, 1-9 (2017). 

  29. G. E. Lim, Y. E. Ha, M. Y. Jo, J. Park, Y. C. Kang, and J. H. Kim, Nonconjugated anionic polyelectrolyte as an interfacial layer for the organic optoelectronic devices, ACS Appl. Mater. Interfaces, 5, 6508-6513 (2013). 

  30. H. Wang, W. Zhang, C. Xu, X. Bi, B. Chen, and S. Yang, Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly, ACS Appl. Mater. Interfaces, 5, 26-34 (2013). 

  31. Y. E. Ha, G. E. Lim, M. Y. Jo, J. Park, Y.-C. Kang, S.-J. Moon, and J. H. Kim, Enhancing the efficiency of opto-electronic devices by the cathode modification, J. Mater. Chem. C, 2, 3820-3825 (2014). 

  32. F. Zhang, M. Ceder, and O. Inganas, Enhancing the photovoltage of polymer solar cells by using a modified cathode, Adv. Mater., 19, 1835-1838 (2007). 

  33. Y. Yang, C. Zhou, S. Xu, H. Hu, B. Chen, J. Zhang, S. Wu, W. Liu, and X. Zhao, Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)-poly (vinylidene fluoride) polymer-blend electrolytes, J. Power Sources, 185, 1492-1498 (2008). 

  34. M. A. K. L. Dissanayake, C. A. Thotawatthage, G. K. R. Senadeera, T. M. W. J. Bandara, W. J. M. J. S. R. Jayasundera, and B. E. Mellander, Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte, J. Photochem. Photobiol. A Chem., 246, 29-35 (2012). 

  35. Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, and Y. Huang, Quasi-solid state dye-sensitized solar cells based on gel polymer electrolyte with poly(acrylonitrile-co-styrene)/NaI + $I_2$ , Sol. Energy, 80, 1483-1488 (2006). 

  36. K. Tennakone, G. K. R. Senadeera, V. P. S. Perera, I. R. M. Kottegoda, and L. A. A. De Silva, Dye-sensitized photoelectrochemical cells based on porous $SnO_2/ZnO$ composite and $TiO_2$ films with a polymer electrolyte., Chem. Mater., 11, 2474-2477 (1999). 

  37. T. M. W. J. Bandara, M. A. K. L. Dissanayake, and B. E. Mellander, Dye sensitized solar cells with poly(acrylonitrile) based plasticized electrolyte containing $MgI_2$ , Electrochim. Acta, 55, 2044-2047 (2010). 

  38. O. A. Ileperuma, M. A. K. L. Dissanayake, S. Somasunderam, and L. R. A. K. Bandara, Photoelectrochemical solar cells with polyacrylonitrile-based and polyethylene oxide-based polymer electrolytes, Sol. Energy Mater. Sol. Cells, 84, 117-124 (2004). 

  39. O. A. Ileperuma, G. R. A. Kumara, H. S. Yang, and K. Murakami, Quasi-solid electrolyte based on polyacrylonitrile for dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 217, 308-312 (2011). 

  40. K. Yuan, L. Chen, and Y. Chen, Versatile electron-collecting interfacial layer by in situ growth of silver nanoparticles in nonconjugated polyelectrolyte aqueous solution for polymer solar cells, J. Phys. Chem. B, 118, 11563-11572 (2014). 

  41. Y. J. Park , M. J. Cha, Y. J. Yoon, S. Cho, J. Y. Kim, J. H. Seo, and B. Walker, Improved performance in n-type organic field-effect transistors via polyelectrolyte-mediated interfacial doping, Adv. Electron. Mater., 3, 1-7 (2017). 

  42. H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf, and C. J. Brabec, Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer, Chem. Mater., 26, 5190-5193 (2014). 

  43. J. H. Kang, Y. J. Park, M. J. Cha, Y. Yi, A. Song, K.-B. Chung, J. H. Seo, and B. Walker, Effect of counter-ions on the properties and performance of non-conjugated polyelectrolyte interlayers in solar cell and transistor devices, RSC Adv., 9, 20670-20676 (2019). 

  44. J. H. Lee, Y. J. Park, J. H. Seo, and B. Walker, Hybrid lead-halide polyelectrolytes as interfacial electron extraction layers in inverted organic solar cells, Polymers, 12, 743 (2020). 

  45. S. Woo, W. Hyun Kim, H. Kim, Y. Yi, H. K. Lyu, and Y. Kim, 8.9% single-stack inverted polymer solar cells with electron-rich polymer nanolayer-modified inorganic electron-collecting buffer layers, Adv. Energy Mater., 4, 1-7 (2014). 

  46. A. K. K. Kyaw, D. H. Wang, V. Gupta, J. Zhang, S. Chand, G. C. Bazan, and A. J. Heeger, Efficient solution-processed small-molecule solar cells with inverted structure, Adv. Mater., 25, 2397-2402 (2013). 

  47. C. Duan, K. Zhang, C. Zhong, F. Huang, and Y. Cao, Recent advances in water/alcohol-soluble ${\pi}$ -conjugated materials: New materials and growing applications in solar cells, Chem. Soc. Rev., 42, 9071-9104 (2013). 

  48. W. Lee, J. H. Seo, and H. Y. Woo, Conjugated polyelectrolytes: A new class of semiconducting material for organic electronic devices, Polymer, 54, 5104-5121 (2013). 

  49. C. H. Wu, C. Y. Chin, T. Y. Chen, S. N. Hsieh, C. H. Lee, T. F. Guo, A. K. Y. Jenf, and T. C. Wen, Enhanced performance of polymer solar cells using solution-processed tetra-n-alkyl ammonium bromides as electron extraction layers, J. Mater. Chem. A, 1, 2582-2587 (2013). 

  50. M. Matsumoto, H. Miyazaki, K. Matsuhiro, Y. Kumashiro, and Y. Takaoka, A dye sensitized $TiO_2$ photoelectrochemical cell constructed with polymer solid electrolyte, Solid State Ionics, 89, 263-267 (1996). 

  51. J. Xia, F. Li, C. Huang, J. Zhai, and L. Jiang, Improved stability quasi-solid-state dye-sensitized solar cell based on polyether framework gel electrolytes, Sol. Energy Mater. Sol. Cells, 90, 944-952 (2006). 

  52. J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, Y. Wei, S. Yin, and T. Sato, Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)-poly(ethylene glycol) composite, J. Photochem. Photobiol. A Chem., 181, 333-337 (2006). 

  53. H. Yang, M. Huang, J. Wu, Z. Lan, S. Hao, and J. Lin, The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells, Mater. Chem. Phys., 110, 38-42 (2008). 

  54. R. Shanti, F. Bella, Y. S. Salim, S. Y. Chee, S. Ramesh, and K. Ramesh, Poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid): Physico-chemical characterization and targeted dye sensitized solar cell application, Mater. Des., 108, 560-569 (2016). 

  55. W. Li, J. Kang, X. Li, S. Fang, Y. Lin, G. Wang, and X. Xiao, A novel polymer quaternary ammonium iodide and application in quasi-solid-state dye-sensitized solar cells, J. Photochem. Photobiol. A Chem., 170, 1-6 (2005). 

  56. P. Zhou, Z. Fang, W. Zhou, Q. Qiao, M. Wang, T. Chen, and S. Yang, Nonconjugated polymer poly(vinylpyrrolidone) as an efficient interlayer promoting electron transport for perovskite solar cells, ACS Appl. Mater. Interfaces, 9, 32957-32964 (2017). 

  57. B. Walker, A. Tamayo, J. Yang, J. Z. Brzezinski, and T. Q. Nguyen, Solution-processed small molecule-based blue light-emitting diodes using conjugated polyelectrolytes as electron injection layers, Appl. Phys. Lett., 93, 91-94 (2008). 

  58. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, B. Kippelen, A universal method to produce low-work function electrodes for organic electronics, Science, 336, 327-332 (2012). 

  59. B. Walker, H. Choi, and J. Y. Kim, Interfacial engineering for highly efficient organic solar cells, Curr. Appl. Phys., 17, 370-391 (2017). 

  60. J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, and G. C. Bazan, Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer, J. Am. Chem. Soc., 133, 8416-8419 (2011). 

  61. H. L. Yip and A. K. Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy Environ. Sci., 5, 5994-6011 (2012). 

  62. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 591-595 (2012). 

  63. M. Y. Jo, Y. E. Ha, and J. H. Kim, Polyviologen derivatives as an interfacial layer in polymer solar cells, Sol. Energy Mater. Sol. Cells, 107, 1-8 (2012). 

  64. V. Raj and S. Kunnetheeri, Nonconjugated polyelectrolyte as efficient fluorescence quencher and their applications as biosensors: Polymer-polymer interaction, ISRN Anal. Chem., 2014, 1-8 (2014). 

  65. E. K. Kim, N. K. Shrestha, W. Lee, G. Cai, and S. H. Han, Influence of water-soluble conjugated/non-conjugated polyelectrolytes on electrodeposition of nanostructured $MnO_2$ film for supercapacitors, Mater. Chem. Phys., 155, 211-216 (2015). 

  66. W. Shin, N. Sylvianti, M. A. Marsya, D. S. Putri, D. W. Chang, J. Kim, Y. W. Kim, T. D. Kim, S. Yoo, and J. Kim, Cathode modification of polymer solar cells by ultrahydrophobic polyelectrolyte, Mol. Cryst. Liq. Cryst., 635, 6-11 (2016). 

  67. H. B. Kim, Y. J. Yoon, J. Jeong, J. Heo, H. Jang, J. H. Seo, B. Walker, and J. Y. Kim, Peroptronic devices: Perovskite-based light-emitting solar cells, Energy Environ. Sci., 10, 1950-1957 (2017). 

  68. B. H. Hamilton, K. A. Kelly, W. Malasi, and C. J. Ziegler, Tetrakis(imidazolyl)borate-based coordination polymers: Group II network solids, $M[B(Im)_4]_2(H_2O)_2$ (M Mg, Ca, Sr), Inorg. Chem., 42, 3067-3073 (2003). 

  69. M. Y. Jo, Y. E. Ha, and J. H. Kim, Interfacial layer material derived from dialkylviologen and sol-gel chemistry for polymer solar cells, Org. Electron., 14, 995-1001 (2013). 

  70. T. T. Do, H. S. Hong, Y. E. Ha, J. Park, Y. C. Kang, and J. H. Kim, Effect of polyelectrolyte electron collection layer counteranion on the properties of polymer solar cells, ACS Appl. Mater. Interfaces, 7, 3335-3341 (2015). 

  71. S. Prescher, F. Polzer, Y. Yang, M. Siebenburger, M. Ballauff, and J. Yuan, Polyelectrolyte as solvent and reaction medium, J. Am. Chem. Soc., 136, 12-15 (2014). 

  72. F. Kretschmer, U. Mansfeld, S. Hoeppener, M. D. Hager, and U. S. Schubert, Tunable synthesis of poly(ethylene imine)-gold nanoparticle clusters, Chem. Commun., 50, 88-90 (2014). 

  73. T. L. Guo, J. G. Li, D. H. Ping, X. Sun, and Y. Sakka, Controlled photocatalytic growth of Ag nanocrystals on brookite and rutile and their SERS performance, ACS Appl. Mater. Interfaces, 6, 236-243 (2014). 

  74. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev., 111, 3669-3712 (2011). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로