$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Development of reference materials for mortar: Determination of the components and relation with mixing ratio

Advances in concrete construction, v.10 no.5, 2020년, pp.381 - 391  

Lim, Dong Kyu (Department of Civil and Environmental Engineering, Dankook University) ,  Choi, Myoung Sung (Department of Civil and Environmental Engineering, Dankook University)

Abstract AI-Helper 아이콘AI-Helper

This study aimed to develop reference materials (RMs) for mortar that can simulate the initial flow characteristics with constant quality over a long period. Through the previous research on the development of RMs for cement paste, the combination of limestone, glycerol, and water was used as the ba...

Keyword

참고문헌 (38)

  1. Banfill, P.F.G. (2016), "The rheology of fresh cement and concrete", British Soc. Rheology, 61-130. 

  2. Bingham, E.C. (1922), Fluidity and Plasticity, Vol. 2, McGraw-Hill. 

  3. Cao, G., Zhang, H., Tan, Y., Wang, J., Deng, R., Xiao, X. and Wu, B. (2015), "Study on the effect of coarse aggregate volume fraction on the flow behavior of fresh concrete via DEM", Procedia Eng., 102, 1820-1826. https://doi.org/10.1016/j.proeng.2015.01.319. 

  4. Choi, M.S., Kim, Y.J., Jang, K.P. and Kwon, S.H. (2014), "Effect of the coarse aggregate size on pipe flow of pumped concrete", Constr. Build. Mater, 66, 723-730. https://doi.org/10.1016/j.conbuildmat.2014.06.027. 

  5. Ciborowski, J. and Wlodarski, A. (1962), "On electrostatic effects in fluidized beds", Chem. Eng. Sci., 17, 23-32. https://doi.org/10.1016/0009-2509(62)80003-7. 

  6. Daniel, R.C., Poloski, A.P. and Saez, A.E. (2008), "Vane rheology of cohesionless glass beads", Powder. Technol., 181, 237-248. https://doi.org/10.1016/j.powtec.2007.05.003. 

  7. Esteves, L.P., Cachim, P.B. and Ferreira, V.M. (2010), "Effect of fine aggregate on the rheology properties of high performance cement-silica systems", Constr. Build. Mater., 24, 640-649. https://doi.org/10.1016/j.conbuildmat.2009.11.005. 

  8. Faleschini, F., Jimenez, C., Barra, M., Aponte, D., Vazquez, E. and Pellegrino, C. (2014), "Rheology of fresh concretes with recycled aggregates", Constr. Build. Mater., 73, 407-416. https://doi.org/10.1016/j.conbuildmat.2014.09.068. 

  9. Farris, R.J. (1968), "Prediction of the viscosity of multi-modal suspensions from unimodal viscosity data", Tran. Soc. Rheol., 12, 281-301. https://doi.org/10.1122/1.549109. 

  10. Ferraris, C.F. (1999), "Measurement of the rheological properties of cement paste: A new approach", Proceedings of the RILEM International Symposium on the Role of Admixtures in High Performance Concrete Monterrey, Mexico, 21-26. 

  11. Ferraris, C.F. and Gaidis, J.M. (1992), "Connection between the rheology of concrete and rheology of cement paste", ACI. Mater., 89, 388-393. 

  12. Ferraris, C.F., Nicos, S.M., Peltz, M., William, L.G., Edward, J.G. and Toman, B. (2019), "Certification of SRM 2497: Standard reference concrete for rheological measurements" , NIST SP 260 #194, National Institute of Standards and Technology, Gaithersburg, MD, USA, April. 

  13. Feys, D., Cepuritis, R., Jacobsen, S., Lesage, K., Secrieru, E. and Yahia, A. (2017), "Measuring rheological properties of cement paste. Most common techniques, procedures and challenges", RILEM Tech. Lett., 2, 129-135. http://dx.doi.org/10.21809/rilemtechlett.2017.43. 

  14. Han, C.G., Lee, C.G. and Heo, Y.S. (2016), "A comparison study between evaluation method on the rheological properties of cement paste", Korea Inst. Build. Constr., 21, 75-82. 

  15. Hoyle, C., Dai, S., Tanner, R. and Jabbarzadeh, A. (2020), "Effect of particle roughness on the rheology of suspensions of hollow glass microsphere particles", Non-Newtonian Fluid Mech., 276, 104235. https://doi.org/10.1016/j.jnnfm.2020.104235. 

  16. Hwang, H.J., Lee, S.H. and Lee, W.J. (2007), "Effect of particle size distribution of binder on the rheological properties of slag cement pastes", Korea. Ceram. Soc., 44, 6-11. https://doi.org/10.4191/kcers.2007.44.1.006. 

  17. Khandavalli, S. and Rothstein, J.P. (2014), "Extensional rheology of shear-thickening fumed silica nano-particles dispersed in an aqueous polyethylene oxide solution", Rheol., 58, 411-431. https://doi.org/10.1122/1.4864620. 

  18. Kim, I.S., Choi, S.Y. and Yang, E.I. (2018), "Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate", Constr. Build. Mater., 184, 269-277. https://doi.org/10.1016/j.conbuildmat.2018.06.221. 

  19. Kulasegarm, S., Karihaloo, B.L. and Ghanbari, A. (2011), "Modeling the flow of self-compacting concrete", Int, Numer. Anal. Meth. Geomech., 35, 713-723. https://doi.org/10.1002/nag.924. 

  20. Lee, D.K. and Choi, M.S. (2018a), "Standard reference materials for cement paste, Part I: Suggestion of constituent materials based on rheological analysis", Mater., 11, 624. https://doi.org/10.3390/ma11040624. 

  21. Lee, D.K. and Choi, M.S. (2018b), "Standard reference materials for cement paste, Part II: Determination of mixing ratios", Mater., 11, 861. https://doi.org/10.3390/ma11050861. 

  22. Lee, D.K. and Choi, M.S. (2018c), "Standard reference materials for cement paste, Part III: Analysis of the flow characteristics for the developed standard reference material according to temperature change", Mater., 11, 2001. https://doi.org/10.3390/ma11102001. 

  23. Lee, D.K. and Choi, M.S. (2020), "Development of reference materials for cement paste", Adv. Concrete. Constr., 9(6), 547-556. https://doi.org/10.12989/acc.2020.9.6.547. 

  24. Lee, D.K., Lee, K.W. and Choi, M.S. (2018e), "Study on filling capacity of self-consolidating concrete for modular LNG storage tank", Korean Soc. Saf., 33, 50-57. 

  25. Lee, D.K., Lee, K.W., Park, G.J., Kim, S.W., Park, J.J., Kim, Y.J. and Choi, M.S. (2018d), "Guideline for filling performance of concrete for modular LNG storage tanks", Korean Soc. Saf., 33, 86-93. 

  26. Lee, K.W., Lee, H.J. and Choi, M.S. (2019), "Evaluation of 3D concrete printing performance from a rheological perspective", Adv. Concrete. Constr., 8(2), 155-163. http://dx.doi.org/10.12989/acc.2019.8.2.155. 

  27. Mostafizur, R.M., Abdul Aziz, A.R., Saidur, R., Bhuiyan, M.H.U. and Mahbubul, I.M. (2014), "Effect of temperature and volume fraction on rheology of methanol based nanofluids", Heat Mass Transf., 77, 765-769. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.055. 

  28. Olivas, A., Ferraris, C.F., Guthrie, W.F. and Toman, B. (2015), "Re-certification of SRM 2492: Bingham paste mixture for rheological measurements", NIST SP-260-182, National Institute of Standards and Technology: Gaithersburg, MD, USA, August. 

  29. Olivas, A., Ferraris, C.F., Martys, S.N., William, L.G., Edward, J.G. and Toman, B. (2017), "Certification of SRM2493: Standard reference mortar for rheological measurements", NIST-SP-260-187, National Institute of Standard Sand Technology, Gaithersburg, MD, USA. 

  30. Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G. and Frechette, F.J. (1988), "Rheological behavior of filled polymeric systems 1. Yield stress and shear-thinning effects", Rheol., 32, 703-735. https://doi.org/10.1122/1.549987. 

  31. Rashad, A. (2016), "Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete", Build. Eng., 5, 119-141. https://doi.org/10.1016/j.jobe.2015.11.011. 

  32. Rashed, A. (2014), "Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement", Constr. Build. Mater., 72, 340-357. https://doi.org/10.1016/j.conbuildmat.2014.08.092. 

  33. Roussel, N. (2012), Understanding the Rheology of Concrete, Woodhead, USA. 

  34. Roussel, N., Lemaitre, A., Flatt, R.J. and Coussot, P. (2010), "Steady state flow of cement suspensions. A micro mechanical state of the art", Cement Concrete Res., 40, 77-84. https://doi.org/10.1016/j.cemconres.2009.08.026. 

  35. Struble, L.J. and Lei, W.G. (1995), "Rheological changes associated with setting of cement paste", Adv. Cement Bas. Mater., 2, 224-230. https://doi.org/10.1016/1065-7355(95)90041-1. 

  36. Uchikawa, H., Ogawa, K. and Uchida, S. (1985), "Influence of character of clinker on the early hydration process and rheological property of cement paste", Cement Concrete Res., 15, 561-572. https://doi.org/10.1016/0008-8846(85)90053-5. 

  37. Wolny, A. and Kazmierczak, W. (1993), "The influence of static electrification on dynamics and rheology of fluidized bed", Chem. Eng. Sci., 48(20), 3529-3534. https://doi.org/10.1016/0009-2509(93)85008-D. 

  38. You, N., Liu, Y., Gu, D., Ozbakkaloglu, T., Pan, J. and Zhang, Y. (2019), "Rheology, shrinkage and pore structure of alkali-activated slag-fly ash mortar incorporating copper slag as fine aggregate", Constr. Build. Mater., 242, 118029. https://doi.org/10.1016/j.conbuildmat.2020.118029 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로