$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Behavioral switching model for current-fed Cockcroft-Walton voltage multiplier

Journal of power electronics, v.20 no.2, 2020년, pp.365 - 375  

Rajaei, Amirhossein (Department of Electrical and Electronics Engineering, Shiraz University of Technology) ,  Dehghanian, Iman (Department of Electrical and Electronics Engineering, Shiraz University of Technology) ,  Shahparasti, Mahdi (Electrical Engineering Section, The Mads Clausen Institute, University of Southern Denmark) ,  Poursmaeil, Edris (Department of Electrical Engineering and Automation, Aalto University)

Abstract AI-Helper 아이콘AI-Helper

After about 80 years of introducing the Cockcroft-Walton (CW) circuit, it is still widely used because of its advantages, such as simplicity and high step-up gain. Several studies focused on the performance and design optimization of the circuit, but a dynamic model of the circuit remains to be esta...

주제어

참고문헌 (45)

  1. Iqbal, S., Singh, G.K., Besar, R.: A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply. IEEE Trans. Power Electron. 23(2), 1003-1008 (2008) 

  2. Vishwanathan, N., Ramanarayana, V.: High voltage dc power supply topology for pulsed load applications with converter switching synchronized to load pulses. In: The Fifth International Conference on Power Electronics and Drive Systems, pp. 618-623 (2003) 

  3. Wang, H., Chung, H., Tapuchi, S., Ioinovici, A.: Modeling and analysis of a current-fed ZCS full-bridge DC/DC converter with adaptive soft-switching energy. In: Applied Power Electronics Conference and Exposition, pp. 1410-1416 (2009) 

  4. Chang, L.-K., Hu, C.-H.: High efficiency MOS charge pumps based on exponential-gain structure with pumping gain increase circuits". IEEE Trans. Power Electron. 21(3), 826-831 (2006) 

  5. Hu, C.-H., Chang, L.-K.: Analysis and modeling of on-chip charge pump designs based on pumping gain increase circuits with a resistive load. IEEE Trans. Power Electron. 23(4), 2187-2194 (2008) 

  6. Alonso, J.M., Blanco, C., Lopez, E., Calleja, A.J., Rico, M.: Analysis, design, and optimization of the LCC resonant inverter as a high-intensity discharge lamp ballast. IEEE Trans. Power Electron. 13(3), 573-585 (1998) 

  7. Jia, P., Yuan, Y.: Analysis and implementation of LC series resonant converter with secondary side clamp diodes under DCM operation for high step-up applications. J. Power Electron. JPE 19(2), 363-379 (2019) 

  8. Tseng, K., Chen, C., Cheng, C.: A high-efficiency high step-up interleaved converter with a voltage multiplier for electric vehicle power management applications. J. Power Electron. JPE 16(2), 414-424 (2016) 

  9. Hu, X., Gao, B., Huang, Y., Chen, H.: Novel single switch DC-DC converter for high step-up conversion ratio. J. Power Electron. JPE 18(3), 662-671 (2018) 

  10. Ortiz, G., Bortis, D., Biela, J., Kolar, J.W.: Optimal design of a 3.5-kV/11-kW DC-DC converter for charging capacitor banks of power modulators. IEEE Trans. Plasma Sci. 38(10), 2565-2573 (2010) 

  11. McLyman, C.W.T.: Transformer and Inductor Design Handbook. CRC Press, Boca Raton (2011) 

  12. Baek, J.W., Ryoo, M.H., Kim, T.J., Yoo, D.W., Kim, J.S.: High boost converter using voltage multiplier. In: IEEE Industrial Electronics Society 31th Annual Conference, pp. 6-12 (2005) 

  13. Berkovich, Y., Axelrod, B., Shenkman, A.: A novel diode-capacitor voltage multiplier for increasing the voltage of photovoltaic cells. In: 11th Workshop on Control and Modeling for Power Electronics, COMPE, pp. 1-5 (2008) 

  14. Santoja, A., Barrado, A., Fernandez, C., Sanz, M., Raga, C., Lazaro, A.: High voltage gain DC-DC converter for micro and nanosatellite electric thrusters. In: 28th Applied Power Electronics Conference and Exposition (APEC), pp. 2057-2063 (2013) 

  15. Muller, L., Kimball, J.W.: Dual-input high gain DC-DC converter based on the Cockcroft-Walton multiplier. In: Energy Conversion Congress and Exposition (ECCE), pp. 5360-5367 (2014) 

  16. Young, C.M., Chen, M.H., Chang, T.A., Ko, C.C., Jen, K.K.: Cascade Cockcroft-Walton voltage multiplier applied to transformerless high step- up DC-DC converter. IEEE Trans. Ind. Electron. 60(2), 523-537 (2013) 

  17. Uno, M., Kukita, A.: Bidirectional pwm converter integrating cell voltage equalizer using series-resonant voltage multiplier for series connected energy storage cells. IEEE Trans. Power Electron. 30(6), 3077-3090 (2015) 

  18. Almeida, M.: Low power consumption bias supply for channel electron multiplier. Electron. Lett. 32(22), 2031-2032 (1996) 

  19. Rezanejad, M., Sheikholeslami, A., Adabi, J.: Modular switched capacitor voltage multiplier topology for pulsed power supply. IEEE Trans. Dielectr. Electr. Insul. 21(2), 635-643 (2014) 

  20. Young, C.M., Chen, M.H.: A novel single-phase ac to high voltage DC converter based on Cockcroft-Walton cascade rectifier. In: International Conference on Power Electronics and Drive Systems, PEDS, pp. 822-826 (2009) 

  21. Axelrod, B., Berkovich, Y., Shenkman, A., Golan, G.: Diode-capacitor voltage multipliers combined with boost-converters: topologies and characteristics. IET Power Electron. 5(6), 873-884 (2012) 

  22. Di Cataldo, G., Palumho, G.: Double and triple charge pump for power IC: dynamic models which take parasitic effects into account. IEEE Trans. Circuits Syst. 40, 92-101 (1993) 

  23. Di Cataldo, G., Palumho, G.: Improved dynamic model of double and triple charge pump to take current leakage into account. Int. J. Circuit Theory Appl. 22(5), 419-423 (1994) 

  24. Wang, F., Li, J.: Improved small signal modeling and dynamic analysis of high step-up converter with charged pump and boost converter. In: IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, pp. 495-499 (2016) 

  25. Di Cataldo, G., Palumbo, G.: Design of an nth order Dickson voltage multiplier. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(5), 414-419 (1996) 

  26. Dickson, J.: On-chip high-voltage generation MNOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits 11, 374-378 (1976) 

  27. Witters, J., Groeseneken, G., Maes, H.: Analysis and modeling of on-chip high-voltage generator circuits for use in EEPROM circuits. IEEE J. Solid-State Circuits 24(1), 1372-1380 (1989) 

  28. Prabhala, V.A.K., Fajri, P., Gouribhatla, V.S.P., Baddipadiga, B.P., Ferdowsi, M.: A DC-DC converter with high voltage gain and two input boost stages. IEEE Trans. Power Electron. 31(1), 4206-4215 (2016) 

  29. Baddipadiga, B., Ferdowsi, M.: A high-voltage-gain DC-DC converter based on modified Dickson charge pump voltage multiplier. IEEE Trans. Power Electron. 32(10), 7707-7715 (2017) 

  30. Tanzawa, T.: An optimum design for integrated switched-capacitor Dickson charge pump multipliers with area power balance. IEEE Trans. Power Electron. 29(2), 534-538 (2014) 

  31. Cruz, F.R.G., et al.: Efficiency comparison of voltage multiplier and boost converter topologies for radio frequency energy harvesting circuit using HSPICE. In: 2016 IEEE Region 10 Conference (TENCON), Singapore, pp. 2142-2146 (2016) 

  32. Tanzawa, T.: Innovation of switched-capacitor voltage multiplier: part 1: a brief history. IEEE Solid-State Circuits Mag. 8(1), 51-59 (2016) 

  33. Tanzawa, T.: Innovation of switched-capacitor voltage multiplier: part 2: fundamentals of the charge pump. IEEE Solid-State Circuits Mag. 8(2), 83-92 (2016) 

  34. Tanzawa, T.: Innovation of switched-capacitor voltage multiplier: part 3: state of the art of switching circuits and applications of charge pumps. IEEE Solid-State Circuits Mag. 8(3), 63-73 (2016) 

  35. Lamantia, A., Maranesi, P.G., Radrizzani, L.: Small-signal model of the Cockcroft-Walton voltage multiplier. IEEE Trans. Power Electron. 9(1), 18-25 (1994) 

  36. Brugler, J.: Theoretical performance of voltage multiplier circuits. IEEE J. Solid-State Circuits 6(3), 132-135 (1971) 

  37. Malesani, L., Piovan, R.: Theoretical performance of the capacitor-diode voltage multiplier fed by a current source. IEEE Trans. Power Electron. 8(2), 147-155 (1993) 

  38. Bellar, M., Watanabe, E., Mesquita, A.: Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers. IEEE Trans. Power Electron. 7(3), 526-534 (1992) 

  39. Kobougias, I.C., Tatakis, E.C.: Optimal design of a half-wave Cockcroft-Walton voltage multiplier with minimum total capacitance. IEEE Trans. Power Electron. 25(9), 2460-2468 (2010) 

  40. Katzir, L., Shmilovitz, D.: A split-source multisection high-voltage power supply for X-ray. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 373-381 (2016) 

  41. Kang, B., Low, K.S., Soon, J.J., Tran, Q.V.: Single-switch quasi-resonant DC-DC converter for a pulsed plasma thruster of satellites. IEEE Trans. Power Electron. 32(6), 4503-4513 (2017) 

  42. Kim, Y.J., Bhamra, H.S., Joseph, J., Irazoqui, P.P.: An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application. IEEE Trans. Circuits Syst. II Express Briefs 62(11), 1028-1032 (2015) 

  43. Weiner, M.M.: Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages. Rev. Sci. Instrum. 40(2), 330-333 (1962) 

  44. Guinjoan, F., Calvente, J., Poveda, A., Martinez, L.: Large-signal modeling and simulation of switching DC-DC converters. IEEE Trans. Power Electron. 12(3), 485-494 (1997) 

  45. Rajaei, A., Khazan, R., Mahmoudian, M., Mardaneh, M., Gitizadeh, M.: A dual inductor high step-up DC/DC converter based on the Cockcroft-Walton multiplier. IEEE Trans. Power Electron. 33(11), 9699-9709 (2018) 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로