$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Chemical Properties of Artificially Buried Wood in an Intertidal Zone during the Deterioration Period 원문보기

목재공학 = Journal of the Korean wood science and technology, v.48 no.6, 2020년, pp.896 - 906  

SEO, Sujin (Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University) ,  KIM, Taekjoon (National Research Institute of Maritime Cultural Heritage) ,  LEE, Jae-Won (Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University)

Abstract AI-Helper 아이콘AI-Helper

Wood deterioration experiments were carried out for 6 months in an intertidal zone of South Korea to monitor the changes in the chemical properties of two types of species, Korean red pine and sawtooth oak. The results of FT-IR spectra and XRD patterns have shown that the chemical properties of the ...

주제어

표/그림 (8)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • The a* and b* values decreased slightly with increased burial. In this study, the color change of the wood surface can be explained by chemical reactions and the accumulation of inorganic compound in the wood surface during burial (Sandak et al., 2014). The difference in color change (ΔE*) between the cross section and the tangential section are shown in Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (34)

  1. Almkvist, G., Persson, I. 2008. Analysis of acids and degradation products related to iron and sulfur in the Swedish warship Vasa. Holzforschung 62(6): 694-703. 

  2. Bjordal, C.G. 2012. Microbial degradation of waterlogged archaeological wood. Journal of Cultural Heritage 13(3): 118-122. 

  3. Bjordal, C.G., Nilsson, T., Daniel, G. 1999. Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. International Biodeterioration & Biodegradation 43(1-2): 63-73. 

  4. Broda, M., Mazela, B. 2017. Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. Journal of Cultural Heritage 25: 149-156. 

  5. Cogulet, A., Blanchet, P., Landry, V. 2016. Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology B: Biology 158: 184-191. 

  6. Colombini, M.P., Lucejko, J.J., Modugno, F., Orlandi, M., Tolppa, E.L., Zoia, L. 2009. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta 80(1): 61-70. 

  7. Gelbrich, J., Mai, C., Militz, H. 2008. Chemical changes in wood degradation by bacteria. International Biodeterioration & Biodegradation 61(1): 24-32. 

  8. Grattan, D.W. 1987. 3-Waterlogged wood. Conservation of Marine Archaeological Objects: 55-67. 

  9. Hadi, Y.S., Massijaya, M.Y., Abdillah, I.B., Pari, G., Arsyad, W.O.M. 2020. Color change and resistance to subterranean termite attack of mangium (Acacia mangium) and sengon (Falcataria moluccana) smoked wood. Journal of the Korean Wood Science and Technology 48(1): 1-11. 

  10. Hwang, I.W., Park, J.H., Kim, S.C. 2018. A study on the optical characteristics according to the lacquer drying conditions for the conservation of lacquerwares. Journal of the Korean Wood Science and Technology 46(56): 610-621. 

  11. Kim, Y-S. 2017. Current researches on the weathering of wood. Journal of the Korean Wood Science and Technology 45(5): 483-494. 

  12. Kim, Y-S. 2018. Current researches on the protection of exterior wood from weathering. Journal of the Korean Wood Science and Technology 46(5): 449-470. 

  13. Komorowicz, M., Wroblewska, H., Fojutowski, A., Kropacz, A., Noskowiak, A., Pomian, I. 2018. The impact of 5 years' underwater exposure in the Baltic Sea (Puck Bay) on selected properties of English oak wood samples. International Biodeterioration & Biodegradation 131: 40-50. 

  14. Korea Standards and Certifications. 2016. Determination of Moisture Content of Wood (KS F 2199). 

  15. Koshijima, T. 1960. Study on mannan in wood pulp. Journal of the Agricultural Chemical Society of Japan 24(7): 682-692. 

  16. Kundu, C., Lee, J.W. 2015. Optimization conditions for oxalic acid pretreatment of deacetylated yellow poplar for ethanol; production. Journal of Industrial and Engineering Chemical 32: 298-304. 

  17. Lucejko, J.J., Mattonai, M., Zborowska, M., Tamburini, D., Cofta, G., Cantisani, E., Kudela J., Cartwright C., Colombini M.P., Ribechini, E. Modugno F. 2018. Deterioration effects of wet environments and brown rot fungus Coniophora puteana on pine wood in the archaeological site of Biskupin (Poland). Microchemical Journal 138: 132-146. 

  18. Macchioni, N., Pizzo, B., Capretti, C., Giachi, G. 2012. How an integrated diagnostic approach can help in a correct evaluation state of preservation of waterlogged archaeological wooden artefacts. Journal of Archaeological Science 39(10): 3255-3263. 

  19. McGee, J.K., April, G.C. 1982. Chemicals from renewable resources-hemicellulose behavior during organosolv delignification of southern yellow pine. Chemical Engineering Communications 19(1-3): 49-56. 

  20. Monachon, M., Berenguer, M.A., Peleb, C., Cornet, E., Guilminot, E., Remazeilles, C., Joseph, E. 2020. Characterization of model samples simulating degradation processes induced by iron and sulfur species on waterlogged wood. Microchemical Journal 155: 104756 

  21. Nilsson, T., Bjordal, C. 2008. Culturing wood-degrading erosion bacteria. International Biodeterioration & Biodegradation 61(1): 3-10. 

  22. Oron, A., Liphschitz, N., Held, B.W., Galili, E., Klein, M., Linker, R., Blanchette, R.A. 2016. Characterization of archaeological waterlogged wooden objects exposed on the hyper-saline Dead Sea shore. Journal of Archaeological Science: Reports 9: 73-86. 

  23. Ozgenc, O., Durmaz, S., Serdar, B., Boyaci, I.H., Eksi-Kocak, H., Ozturk, M. 2018. Characterization of fossil Sequoioxylon wood using analytical instrumental techniques. Vibrational Spectroscopy 96: 10-18. 

  24. Park, Y., Han, Y., Park, J-H, Chung, H., Kim, H., Yang, S., Chang, Y-S, Yeo, H. 2018. Evaluation of deterioration of Larix kaempferi wood heat-treated by superheated steam through field decay test for 12 months. Journal of the Korean Wood Science and Technology 46(5): 497-510. 

  25. Remazeilles, C., Leveque, F., Conforto, E., Meunier, L., Refait, P. 2019. Contribution of magnetic measurement methods to the analysis of iron sulfides in archaeological waterlogged wood-iron assemblies. Microchemical Journal 148: 10-20. 

  26. Sandak, A., Sandak, J., Babinski, L., Pauliny, D., Riggio, M. 2014. Spectral analysis of changes to pine and oak wood natural polymers after short-term waterlogging. Polymer Degradation and Stability 99: 68-79. 

  27. Segal, L., Creely, J., Martin Jr, A., Conrad, C. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10): 786-794. 

  28. Selig, M., Weiss, N., Ji, Y. 2008. Laboratory Analytical Procedure No. TP-510-42629. 

  29. Singh, A.P. 2012. A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. Journal of Cultural Heritage 13(3): 16-20. 

  30. Sjostrom, E. 1981. Wood Chemistry: Fundamentals and Application. Academic press, New York. 

  31. Tamburini, D., Lucejko, J.J., Pizzo, B., Mohammed, M.Y., Sloggett, R., Colombini, M.P. 2017. A critical evaluation of the degradation state of dry archaeological wood from Egypt by SEM, ATR-FTIR, wet chemical analysis and Py(HMDS)-GC-MS. Polymer Degradation and Stability 146: 140-154. 

  32. Traore, M., Kaal, J., Cortizas, A.M. 2016. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 153: 63-70. 

  33. Yi, Y.H. 1997. Conservation of waterlogged wooden finds excavated in wet-site. Journal of Conservation Science 6(2): 126-140. 

  34. Zisi, A., Dix, J.K. 2018. Simulating mass loss of decaying waterlogged wood: A technique for studying ultrasound propagation velocity in waterlogged archaeological wood. Journal of Cultural Heritage 33: 39-47. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로