$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Battery-less Pork Freshness Monitoring Based on High-Efficiency RF Energy Harvesting 원문보기

Journal of sensor science and technology = 센서학회지, v.29 no.5, 2020년, pp.293 - 302  

Nguyen, Nam Hoang (Department of Electronic Engineering, Pukyong National University) ,  Lam, Minh Binh (Department of Electronic Engineering, Pukyong National University) ,  Chung, Wan-Young (Department of Electronic Engineering, Pukyong National University)

Abstract AI-Helper 아이콘AI-Helper

Food safety has emerged as a growing concern for human health in recent times. Consuming contaminated food may lead to serious health problems, and therefore, a system for monitoring food freshness that is both non-detrimental to the quality of food and highly accurate is required to ensure that onl...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, a power management policy was developed to efficiently manage the received power and reduce the charging time of the supercapacitor. Fig.
  • The experiments were performed under two conditions, room temperature and refrigerator temperature, which are the usual conditions under which food is generally stored. The temperature of both conditions was kept stable to guarantee the reliability of the output data of the gas sensors.
  • This paper proposes a harmless and highly accurate device for monitoring and predicting the freshness of pork based on four factors––temperature, humidity, concentration of NH3, and that of H2S gas––using a battery-less smart sensor tag.
  • This study aims to employ an RF energy scavenging circuit [14- 17] to harvest energy from radio waves and supply power to a smart sensor tag. The concept of RF energy harvesting is not novel and many systems have been designed to operate at different frequencies, such as 13.
  • To optimize the power consumption of our battery-less sensor tag, two commercial and extremely-low-power electrochemical gas sensors—ME3-NH3 (Winsen, China) and 3SP-H2S-50 (Spec Sensors, USA)—were selected to measure CNH3 and CH2S, respectively.

대상 데이터

  • 3. The circuit includes an antenna operating at a high frequency of 13.56 MHz, an RF-toDC circuit, a boost converter, and a charging circuit.
  • The experiments were carried out four times under each storage condition. Totally, eight packages were used in the research.

이론/모형

  • Two packages were stored under the same condition and monitored until they were spoiled. In each package, the gas concentrations were recorded and filtered using the 3-point moving average filter method. The data of each experiment were the average values of the results from both packages.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. M. M. Aung and Y. S. Chang, "Temperature Management for the Quality Assurance of a Perishable Food Supply Chain", Food Control, Vol. 40, pp. 198-207, 2013. 

  2. W. R. Kim, M. M. Aung, Y. S. Chang, and C. Makatsoris, "Freshness Gauge based cold storage management: A method for adjusting", Food Control, Vol. 40, pp. 198-207, 2013. 

  3. W. R. Kim, M. M. Aung, Y. S. Chang, and C. Makatsoris, "Freshness Gauge based cold storage management: A method for adjusting temperature and humidity levels for food quality", Food Control, Vol. 47, pp. 510-519, 2015. 

  4. G. T. Le, T. V. Tran, H. S. Lee, and W. Y. Chung, "Longrange batteryless RF sensor for monitoring the freshness of packaged vegetables", Sens. Actuators A, Vol. 237, pp. 20-28, 2016. 

  5. A. A. Argyri, A. I. Doulgeraki, V. A. Blana, E. Z. Panagou, and G. J. E. Nychas, "Potential of a simple HPLC-based approach for the identification of the spoilage status of minced beef stored at various temperatures and packaging systems", Int. J. Food Microbiol., Vol. 150, No. 1, pp. 25-33, 2011. 

  6. Q. Chen, Z. Hui, J. Zhao, and Q. Ouyang, "Evaluation of chicken freshness using a low-cost colorimetric sensor array with AdaBoost-OLDA classification algorithm", LWT - Food Sci. Technol., Vol. 57, No. 2, pp. 502-507, 2014. 

  7. C. Rukchon, A. Nopwinyuwong, S. Trevanich, T. Jinkarn, and P. Suppakul, "Development of a food spoilage indicator for monitoring freshness of skinless chicken breast", Talanta, Vol. 130, pp. 547-554, 2014. 

  8. J. Koskela, J. Sarfraz, P. Ihalainen, A. Maattanen, P. Pulkkinen, H. Tenhu, T. Nieminen, A. Kilpela, and J. Peltonen, "Monitoring the quality of raw poultry by detecting hydrogen sulfide with printed sensors", Sens. Actuators B, Vol. 218, pp. 89-96, 2015. 

  9. A. Loutfi, S. Coradeschi, G. K. Mani, P. Shankar, and J. B. B. Rayappan, "Electronic noses for food quality: A review", J. Food Eng., Vol. 144. pp. 103-111, 2015. 

  10. K. Timsorn, T. Thoopboochagorn, N. Lertwattanasakul, and C. Wongchoosuk, "Evaluation of bacterial population on chicken meats using a briefcase electronic nose", Biosyst. Eng., Vol. 151, pp. 116-125, 2016. 

  11. M. Yu, W. D. McCulloch, Z. Huang, B. B. Trang, J. Lu, K. Amine, and Y. Wu, "Solar-powered electrochemical energy storage: an alternative to solar fuels", J. Mater. Chem. A, Vol. 4, No. 8, pp. 2766-2782, 2016. 

  12. V. Leonov, "Thermoelectric energy harvesting of human body heat for wearable sensors", IEEE Sens. J., Vol. 13, No. 6, pp. 2284-2291, 2013. 

  13. M. Wahbah, M. Alhawari, B. Mohammad, H. Saleh, and M. Ismail, "Characterization of human body-based thermal and vibration energy harvesting for wearable devices", IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 4, No. 3, pp. 354-363, 2014. 

  14. G. K. Singh, "Solar power generation by PV (photovoltaic) technology: A review", Energy, Vol. 53. pp. 1-13, 2013. 

  15. P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. Victor, and Y. L. Guan, "Wireless energy harvesting for the Internet of Things", IEEE Commun. Mag., Vol. 53, No. 6, pp. 102-108, 2015. 

  16. K. Kaushik, D. Mishra, S. De, K. R. Chowdhury, and W. Heinzelman, "Low-Cost Wake-Up Receiver for RF Energy Harvesting Wireless Sensor Networks", IEEE Sens. J., Vol. 16, No. 16, pp. 6270-6278, 2016. 

  17. D. Mishra, S. De, S. Jana, S. Basagni, K. Chowdhury, and W. Heinzelman, "Smart RF energy harvesting communications: Challenges and opportunities", IEEE Commun. Mag., Vol. 53, No. 4, pp. 70-78, 2015. 

  18. Y. E. Sun and N. M. Mahyuddin, "A 1.8 GHz and 2.4 GHz multiplier design for RF energy harvester in wireless sensor network", 9th Int. Conf. on Robot. Vis. Signal Process. Power Appl., Vol. 398. pp. 501-510, 2016. 

  19. S. K. Pandey, K. H. Kim, and K. T. Tang, "A review of sensor-based methods for monitoring hydrogen sulfide", Trends Anal. Chem., Vol. 32. pp. 87-99, 2012. 

  20. O. Mourad, P. Le Thuc, R. Staraj, and P. Iliev, "System modeling of the RFID contactless inductive coupling using 13.56 MHz loop antennas", 8th Eur. Conf. Antennas Propag., pp. 2034-2038, The Hague, Netherlands, 2014. 

  21. P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. R. Chowdhury, "Design optimization and implementation for RF energy harvesting circuits", IEEE J. Emerg. Sel. Top. Circuits Syst., Vol. 2, No. 1, pp. 24-33, 2012. 

  22. E. M. Ali, N. Z. Yahaya, N. Perumal, and M. A. Zakariya, "Development of Cockcroft? Walton voltage multiplier for RF energy harvesting applications", J. Sci. Res., Vol. 3, No. 3, pp. 47-51, 2016. 

  23. M. Guan, K. Wang, Q. Zhu, and W. H. Liao, "A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting", J. Electron. Mater., Vol. 45, No. 11, pp. 5514-5520, 2016. 

  24. S. A. Wahab, M. S. Bhuyan, J. Sampe, and S. H. M. Ali, "Parametric analysis of boost converter for energy harvesting using piezoelectric for micro devices", 2014 IEEE Int. Conf. Semicond. Electron., pp. 525-528, Kuala Lumpur, Malaysia, 2014. 

  25. K. H. Eom, K. H. Hyun, S. Lin, and J. W. Kim, "The meat freshness monitoring system using the smart RFID tag", Int. J. Distrib. Sens. Netw., Vol. 10, No. 7, pp. 1-9, 2014. 

  26. X. Y. Tian, Q. Cai, and Y. M. Zhang, "Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method", Sensors, Vol. 12, No. 1, pp. 260-277, 2012. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로