$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain 원문보기

BMB reports, v.53 no.11, 2020년, pp.551 - 564  

Park, Chan-Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ,  Lee, Sung-Min (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ,  Yoon, Ki-Jun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

Proper development of the nervous system is critical for its function, and deficits in neural development have been implicated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developin...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Therefore, dysregulation of these post-translational regulatory programs often manifests as malformation or dysfunction of the normal CNS, which is implanted in various human brain disorders. In this review, we will overview the recent advances in our understanding of the transcriptome plasticity by RNA modifications in neurodevelopment, and how the alterations in these RNA regulatory programs lead to human brain disorders.
본문요약 정보가 도움이 되었나요?

참고문헌 (141)

  1. 1 Telley L Govindan S Prados J 2016 Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex Science 351 1443 1446 10.1126/science.aad8361 26940868 

  2. 2 Yoon KJ Vissers C Ming GL Song H 2018 Epi-genetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence J Cell Biol 217 1901 1914 10.1083/jcb.201802117 29666150 

  3. 3 Livneh I Moshitch-Moshkovitz S Amariglio N Rechavi G Dominissini D 2020 The m6A epitranscriptome: transcriptome plasticity in brain development and function Nat Rev Neurosci 21 36 51 10.1038/s41583-019-0244-z 31804615 

  4. 4 Zhao BS Roundtree IA He C 2017 Post-transcriptional gene regulation by mRNA modifications Nat Rev Mol Cell Biol 18 31 42 10.1038/nrm.2016.132 27808276 

  5. 5 Meyer KD Jaffrey SR 2017 Rethinking m(6)A readers, writers, and erasers Annu Rev Cell Dev Biol 33 319 342 10.1146/annurev-cellbio-100616-060758 28759256 

  6. 6 Hussain S 2017 Shaping and reshaping transcriptome plasticity during evolution Trends Biochem Sci 42 682 684 10.1016/j.tibs.2017.06.009 28716332 

  7. 7 Meyer KD Saletore Y Zumbo P Elemento O Mason CE Jaffrey SR 2012 Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons Cell 149 1635 1646 10.1016/j.cell.2012.05.003 22608085 

  8. 8 Liu J Li K Cai J 2020 Landscape and regulation of m(6)A and m(6)Am Methylome across human and mouse tissues Mol Cell 77 426 440 10.1016/j.molcel.2019.09.032 31676230 

  9. 9 Liu J An Z Luo J Li J Li F Zhang Z 2020 Episo: quantitative estimation of RNA 5-methylcytosine at isoform level by high-throughput sequencing of RNA treated with bisulfite Bioinformatics 36 2033 2039 10.1093/bioinformatics/btz900 31794005 

  10. 10 Li X Zhu P Ma S 2015 Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome Nat Chem Biol 11 592 597 10.1038/nchembio.1836 26075521 

  11. 11 Dominissini D Moshitch-Moshkovitz S Schwartz S 2012 Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq Nature 485 201 206 10.1038/nature11112 22575960 

  12. 12 Meyer KD Patil DP Zhou J 2015 5' UTR m(6)A Promotes Cap-Independent Translation Cell 163 999 1010 10.1016/j.cell.2015.10.012 26593424 

  13. 13 Liu J Yue Y Han D 2014 A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation Nat Chem Biol 10 93 95 10.1038/nchembio.1432 24316715 

  14. 14 Jia G Fu Y Zhao X 2011 N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO Nat Chem Biol 7 885 887 10.1038/nchembio.687 22002720 

  15. 15 Zheng G Dahl JA Niu Y 2013 ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility Mol Cell 49 18 29 10.1016/j.molcel.2012.10.015 23177736 

  16. 16 Wei J Liu F Lu Z 2018 Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm Mol Cell 71 973 985 10.1016/j.molcel.2018.08.011 30197295 

  17. 17 Mauer J Jaffrey SR 2018 FTO, m(6) Am , and the hypothesis of reversible epitranscriptomic mRNA modifications FEBS Lett 592 2012 2022 10.1002/1873-3468.13092 29754392 

  18. 18 Wang X Zhao BS Roundtree IA 2015 N(6)-methyladenosine modulates messenger RNA translation efficiency Cell 161 1388 1399 10.1016/j.cell.2015.05.014 26046440 

  19. 19 Du H Zhao Y He J 2016 YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex Nat Commun 7 12626 10.1038/ncomms12626 27558897 

  20. 20 Park OH Ha H Lee Y 2019 Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex Mol Cell 74 494 507 10.1016/j.molcel.2019.02.034 30930054 

  21. 21 Shi H Wang X Lu Z 2017 YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA Cell Res 27 315 328 10.1038/cr.2017.15 28106072 

  22. 22 Zaccara S Jaffrey SR 2020 A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA Cell 181 1582 1595 10.1016/j.cell.2020.05.012 32492408 

  23. 23 Lasman L Krupalnik V Viukov S 2020 Context-dependent functional compensation between Ythdf m6A reader proteins Genes Dev 34 19 20 10.1101/2020.06.03.131441 32943573 

  24. 24 Xiao W Adhikari S Dahal U 2016 Nuclear m(6)A reader YTHDC1 regulates mRNA splicing Mol Cell 61 507 519 10.1016/j.molcel.2016.01.012 26876937 

  25. 25 Roundtree IA Luo GZ Zhang Z 2017 YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs Elife 6 e31311 10.7554/eLife.31311 28984244 

  26. 26 Patil DP Chen CK Pickering BF 2016 m(6)A RNA methylation promotes XIST-mediated transcriptional repression Nature 537 369 373 10.1038/nature19342 27602518 

  27. 27 Mao Y Dong L Liu XM 2019 m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2 Nat Commun 10 5332 10.1038/s41467-019-13317-9 31767846 

  28. 28 Alarcon CR Lee H Goodarzi H Halberg N Tavazoie SF 2015 N6-methyladenosine marks primary microRNAs for processing Nature 519 482 485 10.1038/nature14281 25799998 

  29. 29 Huang H Weng H Sun W 2018 Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation Nat Cell Biol 20 285 295 10.1038/s41556-018-0045-z 29476152 

  30. 30 Wu R Li A Sun B 2019 A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination Cell Res 29 23 41 10.1038/s41422-018-0113-8 30514900 

  31. 31 Dimitrova DG Teysset L Carre C 2019 RNA 2'-O-methylation (Nm) modification in human diseases Genes (Basel) (Basel) 117 10.3390/genes10020117 30764532 

  32. 32 Byszewska M Smietanski M Purta E Bujnicki JM 2014 RNA methyltransferases involved in 5' cap biosynthesis RNA Biol 11 1597 1607 10.1080/15476286.2015.1004955 25626080 

  33. 33 Dai Q Moshitch-Moshkovitz S Han D 2017 Nm-seq maps 2'-O-methylation sites in human mRNA with base precision Nat Methods 14 695 698 10.1038/nmeth.4294 28504680 

  34. 34 Guy MP Phizicky EM 2015 Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes RNA 21 61 74 10.1261/rna.047639.114 25404562 

  35. 35 Leschziner GD Coffey AJ Andrew T 2011 Q8IYL2 is a candidate gene for the familial epilepsy syndrome of Partial Epilepsy with Pericentral Spikes (PEPS) Epilepsy Res 96 109 115 10.1016/j.eplepsyres.2011.05.010 21658913 

  36. 36 Reichow SL Hamma T Ferre-D'Amare AR Varani G 2007 The structure and function of small nucleolar ribonucleoproteins Nucleic Acids Res 35 1452 1464 10.1093/nar/gkl1172 17284456 

  37. 37 Belanger F Stepinski J Darzynkiewicz E Pelletier J 2010 Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase J Biol Chem 285 33037 33044 10.1074/jbc.M110.155283 20713356 

  38. 38 Khoddami V Cairns BR 2013 Identification of direct targets and modified bases of RNA cytosine methyltransferases Nat Biotechnol 31 458 464 10.1038/nbt.2566 23604283 

  39. 39 Yang X Yang Y Sun BF 2017 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader Cell Res 27 606 625 10.1038/cr.2017.55 28418038 

  40. 40 Xing J Yi J Cai X 2015 NSun2 promotes cell growth via elevating cyclin-dependent kinase 1 translation Mol Cell Biol 35 4043 4052 10.1128/MCB.00742-15 26391950 

  41. 41 Motorin Y Lyko F Helm M 2010 5-methylcytosine in RNA: detection, enzymatic formation and biological functions Nucleic Acids Res 38 1415 1430 10.1093/nar/gkp1117 20007150 

  42. 42 Basanta-Sanchez M Wang R Liu Z 2017 TET1-mediated oxidation of 5-formylcytosine (5fC) to 5-carboxycytosine (5caC) in RNA Chembiochem 18 72 76 10.1002/cbic.201600328 27805801 

  43. 43 Jobert L Skjeldam HK Dalhus B 2013 The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control Mol Cell 49 339 345 10.1016/j.molcel.2012.11.010 23246433 

  44. 44 Schwartz S Bernstein DA Mumbach MR 2014 Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA Cell 159 148 162 10.1016/j.cell.2014.08.028 25219674 

  45. 45 Carlile TM Rojas-Duran MF Zinshteyn B Shin H Bartoli KM Gilbert WV 2014 Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells Nature 515 143 146 10.1038/nature13802 25192136 

  46. 46 Duan J Li L Lu J Wang W Ye K 2009 Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase Mol Cell 34 427 439 10.1016/j.molcel.2009.05.005 19481523 

  47. 47 Carlile TM Martinez NM Schaening C 2019 mRNA structure determines modification by pseudouridine synthase 1 Nat Chem Biol 15 966 974 10.1038/s41589-019-0353-z 31477916 

  48. 48 Yoon KJ Ringeling FR Vissers C 2017 Temporal control of mammalian cortical neurogenesis by m(6)A methylation Cell 171 877 889 10.1016/j.cell.2017.09.003 28965759 

  49. 49 Wang Y Li Y Yue M 2018 N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications Nat Neurosci 21 195 206 10.1038/s41593-017-0057-1 29335608 

  50. 50 Li Y Xia L Tan K 2020 N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2 Nat Genet 52 870 877 10.1038/s41588-020-0677-3 32778823 

  51. 51 Yao B Christian KM He C Jin P Ming GL Song H 2016 Epigenetic mechanisms in neurogenesis Nat Rev Neurosci 17 537 549 10.1038/nrn.2016.70 27334043 

  52. 52 Li M Zhao X Wang W 2018 Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice Genome Biol 19 69 10.1186/s13059-018-1436-y 29855337 

  53. 53 Guy MP Shaw M Weiner CL 2015 Defects in tRNA anticodon loop 2'-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1 Hum Mutat 36 1176 1187 10.1002/humu.22897 26310293 

  54. 54 Higa-Nakamine S Suzuki T Uechi T 2012 Loss of ribosomal RNA modification causes developmental defects in zebrafish Nucleic Acids Res 40 391 398 10.1093/nar/gkr700 21908402 

  55. 55 Bouffard S Dambroise E Brombin A 2018 Fibrillarin is essential for S-phase progression and neuronal differentiation in zebrafish dorsal midbrain and retina Dev Biol 437 1 16 10.1016/j.ydbio.2018.02.006 29477341 

  56. 56 Cavaille J Buiting K Kiefmann M 2000 Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization Proc Natl Acad Sci U S A 97 14311 14316 10.1073/pnas.250426397 11106375 

  57. 57 Peters J 2008 Prader-Willi and snoRNAs Nat Genet 40 688 689 10.1038/ng0608-688 18509309 

  58. 58 Rai K Chidester S Zavala CV 2007 Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish Genes Dev 21 261 266 10.1101/gad.1472907 17289917 

  59. 59 Goll MG Kirpekar F Maggert KA 2006 Methyl-ation of tRNAAsp by the DNA methyltransferase homo-log Dnmt2 Science 311 395 398 10.1126/science.1120976 16424344 

  60. 60 Blanco S Dietmann S Flores JV 2014 Aberrant methylation of tRNAs links cellular stress to neurodevelopmental disorders EMBO J 33 2020 2039 10.15252/embj.201489282 25063673 

  61. 61 Flores JV Cordero-Espinoza L Oeztuerk-Winder F 2017 Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility Stem Cell Reports 8 112 124 10.1016/j.stemcr.2016.11.014 28041877 

  62. 62 Tuorto F Liebers R Musch T 2012 RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis Nat Struct Mol Biol 19 900 905 10.1038/nsmb.2357 22885326 

  63. 63 Angelova MT Dimitrova DG Dinges N 2018 The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders Front Bioeng Biotechnol 6 46 10.3389/fbioe.2018.00046 29707539 

  64. 64 Shaheen R Han L Faqeih E 2016 A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition Hum Genet 135 707 713 10.1007/s00439-016-1665-7 27055666 

  65. 65 Heiss NS Bachner D Salowsky R Kolb A Kioschis P Poustka A 2000 Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1 Genomics 67 153 163 10.1006/geno.2000.6227 10903840 

  66. 66 Xu H Dzhashiashvili Y Shah A 2020 m(6)A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination Neuron 105 293 309 10.1016/j.neuron.2019.12.013 31901304 

  67. 67 Chizhikov V Millen KJ 2003 Development and malformations of the cerebellum in mice Mol Genet Metab 80 54 65 10.1016/j.ymgme.2003.08.019 14567957 

  68. 68 Wang CX Cui GS Liu X 2018 METTL3-mediated m6A modification is required for cerebellar development PLoS Biol 16 e2004880 10.1371/journal.pbio.2004880 29879109 

  69. 69 Ma C Chang M Lv H 2018 RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum Genome Biol 19 68 10.1186/s13059-018-1435-z 29855379 

  70. 70 Ma DK Bonaguidi MA Ming GL Song H 2009 Adult neural stem cells in the mammalian central nervous system Cell Res 19 672 682 10.1038/cr.2009.56 19436263 

  71. 71 Chen J Zhang YC Huang C 2019 m(6)A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2 Genomics Pro-teomics Bioinformatics 17 154 168 10.1016/j.gpb.2018.12.007 31154015 

  72. 72 Li L Zang L Zhang F 2017 Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis Hum Mol Genet 26 2398 2411 10.1093/hmg/ddx128 28398475 

  73. 73 Batool S Raza H Zaidi J Riaz S Hasan S Syed NI 2019 Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders J Neurophysiol 121 1381 1397 10.1152/jn.00833.2018 30759043 

  74. 74 Chang M Lv H Zhang W 2017 Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain Open Biol 7 170166 10.1098/rsob.170166 28931651 

  75. 75 Engel M Eggert C Kaplick PM 2018 The role of m(6)A/m-RNA methylation in stress response regulation Neuron 99 389 403 10.1016/j.neuron.2018.07.009 30048615 

  76. 76 Koranda JL Dore L Shi H 2018 Mettl14 is essential for epitranscriptomic regulation of striatal function and learning Neuron 99 283 292 10.1016/j.neuron.2018.06.007 30056831 

  77. 77 Shi H Zhang X Weng YL 2018 m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1 Nature 563 249 253 10.1038/s41586-018-0666-1 30401835 

  78. 78 Merkurjev D Hong WT Iida K 2018 Synaptic N(6)-methyladenosine (m(6)A) epitranscriptome reveals functional partitioning of localized transcripts Nat Neurosci 21 1004 1014 10.1038/s41593-018-0173-6 29950670 

  79. 79 Zhang Z Wang M Xie D 2018 METTL3-mediated N(6)-methyladenosine mRNA modification enhances long-term memory consolidation Cell Res 28 1050 1061 10.1038/s41422-018-0092-9 30297870 

  80. 80 Hou Y Dan X Babbar M 2019 Ageing as a risk factor for neurodegenerative disease Nat Rev Neurol 15 565 581 10.1038/s41582-019-0244-7 31501588 

  81. 81 Casella G Tsitsipatis D Abdelmohsen K Gorospe M 2019 mRNA methylation in cell senescence Wiley Inter-discip Rev RNA 10 e1547 10.1002/wrna.1547 31144457 

  82. 82 Min KW Zealy RW Davila S 2018 Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability Aging Cell 17 e12753 10.1111/acel.12753 29573145 

  83. 83 Lee MY Leonardi A Begley TJ Melendez JA 2020 Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming Redox Biol 28 101375 10.1016/j.redox.2019.101375 31765888 

  84. 84 Weng YL Wang X An R 2018 Epitranscriptomic m(6)A regulation of axon regeneration in the adult mammalian nervous system Neuron 97 313 325 10.1016/j.neuron.2017.12.036 29346752 

  85. 85 Cumming TB Brodtmann A 2011 Can stroke cause neurodegenerative dementia? Int J Stroke 6 416 424 10.1111/j.1747-4949.2011.00666.x 21951407 

  86. 86 Chokkalla AK Mehta SL Kim T Chelluboina B Kim J Vemuganti R 2019 Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain Stroke 50 2912 2921 10.1161/STROKEAHA.119.026433 31436138 

  87. 87 Fan L Mao C Hu X 2019 New insights into the pathogenesis of Alzheimer's disease Front Neurol 10 1312 10.3389/fneur.2019.01312 31998208 

  88. 88 Keller L Xu W Wang HX Winblad B Fratiglioni L Graff C 2011 The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study J Alzheimers Dis 23 461 469 10.3233/JAD-2010-101068 21098976 

  89. 89 Reitz C Tosto G Mayeux R Luchsinger JA Group N-LNFS Alzheimer's disease neuroimaging I 2012 Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer's disease PLoS One 7 e50354 10.1371/journal.pone.0050354 23251365 

  90. 90 Li H Ren Y Mao K 2018 FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling Biochem Biophys Res Commun 498 234 239 10.1016/j.bbrc.2018.02.201 29501742 

  91. 91 Liu X Meng P Yang G Zhang M Peng S Zhai MZ 2020 Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress BMC Genomics 21 474 10.1186/s12864-020-06879-2 32650719 

  92. 92 Westmark CJ Maloney B Alisch RS Sokol DK Lahiri DK 2020 FMRP regulates the nuclear export of Adam9 and Psen1 mRNAs: secondary analysis of an N(6)-methyladenosine dataset Sci Rep 10 10781 10.1038/s41598-020-66394-y 32612155 

  93. 93 Boza-Serrano A Yang Y Paulus A Deierborg T 2018 Innate immune alterations are elicited in micro-glial cells before plaque deposition in the Alzheimer's disease mouse model 5xFAD Sci Rep 8 1550 10.1038/s41598-018-19699-y 29367720 

  94. 94 Balestrino R Schapira AHV 2020 Parkinson disease Eur J Neurol 27 27 42 10.1111/ene.14108 31631455 

  95. 95 Chen X Yu C Guo M 2019 Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death ACS Chem Neurosci 10 2355 2363 10.1021/acschemneuro.8b00657 30835997 

  96. 96 Hess ME Hess S Meyer KD 2013 The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry Nat Neurosci 16 1042 1048 10.1038/nn.3449 23817550 

  97. 97 Peng S Xiao W Ju D 2019 Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1 Sci Transl Med 11 eaau7116 10.1126/scitranslmed.aau7116 30996080 

  98. 98 Vissers LE Gilissen C Veltman JA 2016 Genetic studies in intellectual disability and related disorders Nat Rev Genet 17 9 18 10.1038/nrg3999 26503795 

  99. 99 Iwase S Berube NG Zhou Z 2017 Epigenetic etiology of intellectual disability J Neurosci 37 10773 10782 10.1523/JNEUROSCI.1840-17.2017 29118205 

  100. 100 Zhang F Kang Y Wang M 2018 Fragile X mental retardation protein modulates the stability of its m6A-mark-ed messenger RNA targets Hum Mol Genet 27 3936 3950 10.1093/hmg/ddy292 30107516 

  101. 101 Ignatova VV Stolz P Kaiser S 2020 The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs Genes Dev 34 715 729 10.1101/gad.333369.119 32217665 

  102. 102 Richard EM Polla DL Assir MZ 2019 Bi-allelic variants in METTL5 cause autosomal-recessive intellectual disability and microcephaly Am J Hum Genet 105 869 878 10.1016/j.ajhg.2019.09.007 31564433 

  103. 103 de Brouwer APM Abou Jamra R Kortel N 2018 Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior Am J Hum Genet 103 1045 1052 10.1016/j.ajhg.2018.10.026 30526862 

  104. 104 Bykhovskaya Y Casas K Mengesha E Inbal A Fischel-Ghodsian N 2004 Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA) Am J Hum Genet 74 1303 1308 10.1086/421530 15108122 

  105. 105 Cao M Dona M Valentino ML 2016 Clinical and molecular study in a long-surviving patient with MLASA syndrome due to novel PUS1 mutations Neurogenetics 17 65 70 10.1007/s10048-015-0465-x 26556812 

  106. 106 Abbasi-Moheb L Mertel S Gonsior M 2012 Mutations in NSUN2 cause autosomal-recessive intellectual disability Am J Hum Genet 90 847 855 10.1016/j.ajhg.2012.03.021 22541559 

  107. 107 Martinez FJ Lee JH Lee JE 2012 Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome J Med Genet 49 380 385 10.1136/jmedgenet-2011-100686 22577224 

  108. 108 Khan MA Rafiq MA Noor A 2012 Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability Am J Hum Genet 90 856 863 10.1016/j.ajhg.2012.03.023 22541562 

  109. 109 Willems P Vits L Buntinx I Raeymaekers P Van Broeckhoven C Ceulemans B 1993 Localization of a gene responsible for nonspecific mental retardation (MRX9) to the pericentromeric region of the X chromosome Genomics 18 290 294 10.1006/geno.1993.1468 8288232 

  110. 110 Hamel BC Smits AP van den Helm B 1999 Four families (MRX43, MRX44, MRX45, MRX52) with nonspecific X-linked mental retardation: clinical and psychometric data and results of linkage analysis Am J Med Genet 85 290 304 10.1002/(SICI)1096-8628(19990730)85:3<290::AID-AJMG21>3.0.CO;2-H 10398246 

  111. 111 Dai L Xing L Gong P 2008 Positive association of the FTSJ1 gene polymorphisms with nonsyndromic X-linked mental retardation in young Chinese male subjects J Hum Genet 53 592 597 10.1007/s10038-008-0287-x 18401546 

  112. 112 Wang R Lei T Fu F 2019 Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in South China Pediatr Neonatol 60 35 42 10.1016/j.pedneo.2018.03.006 29631977 

  113. 113 Giorda R Bonaglia MC Beri S 2009 segmental duplications mediate a recurrent dup(X)(p11. 22-p11.23) associated with mental retardation, speech delay, and EEG anomalies in males and females Am J Hum Genet 85 394 400 10.1016/j.ajhg.2009.08.001 19716111 

  114. 114 Zhang X Wang F Wang Z 2020 ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m(6)A-dependent manner Ann Transl Med 8 646 10.21037/atm-20-3079 32566583 

  115. 115 Jensen LR Garrett L Holter SM 2019 A mouse model for intellectual disability caused by mutations in the X-linked 2'Omethyltransferase Ftsj1 gene Biochim Biophys Acta Mol Basis Dis 1865 2083 2093 10.1016/j.bbadis.2018.12.011 30557699 

  116. 116 Bai L Tang Q Zou Z 2018 m6A demethylase FTO regulates dopaminergic neurotransmission deficits caused by arsenite Toxicol Sci 165 431 446 10.1093/toxsci/kfy172 29982692 

  117. 117 Choudhry Z Sengupta SM Grizenko N 2013 Association between obesity-related gene FTO and ADHD Obesity (Silver Spring) (Silver Spring) E738 744 10.1002/oby.20444 23512716 

  118. 118 Oldmeadow C Mossman D Evans TJ 2014 Com-bined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci J Psychiatr Res 52 44 49 10.1016/j.jpsychires.2014.01.011 24507884 

  119. 119 Yoon KJ Ming GL Song H 2018 Epitranscriptomes in the adult mammalian brain: dynamic changes regulate behavior Neuron 99 243 245 10.1016/j.neuron.2018.07.019 30048610 

  120. 120 Barbon A Magri C 2020 RNA editing and modifications in mood disorders Genes (Basel) (Basel) 872 10.3390/genes11080872 32752036 

  121. 121 Du T Rao S Wu L 2015 An association study of the m6A genes with major depressive disorder in Chinese Han population J Affect Disord 183 279 286 10.1016/j.jad.2015.05.025 26047305 

  122. 122 Bian J Zhuo Z Zhu J 2020 Association between METTL3 gene polymorphisms and neuroblastoma susceptibility: A nine-centre case-control study J Cell Mol Med 24 9280 9286 10.1111/jcmm.15576 32615646 

  123. 123 Zhuo Z Lu H Zhu J 2020 METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eight-center case-control study Mol Ther Nucleic Acids 22 17 26 10.1016/j.omtn.2020.08.009 32891980 

  124. 124 Cheng J Xu L Deng L 2020 RNA N(6)-methyladenosine modification is required for miR-98/MYCN axis-mediated inhibition of neuroblastoma progression Sci Rep 10 13624 10.1038/s41598-020-64682-1 32788584 

  125. 125 Wang Z Cheng H Xu H Yu X Sui D 2020 A five-gene signature derived from m6A regulators to improve prognosis prediction of neuroblastoma Cancer Biomark 28 275 284 10.3233/CBM-191196 32176634 

  126. 126 Louis DN Ohgaki H Wiestler OD 2007 The 2007 WHO classification of tumours of the central nervous system Acta Neuropathol 114 97 109 10.1007/s00401-007-0243-4 17618441 

  127. 127 Stupp R Roila F Group EGW 2009 Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up Ann Oncol 20 Suppl 20 Suppl 4 126 128 10.1093/annonc/mdp151 19454432 

  128. 128 Xi Z Xue Y Zheng J Liu X Ma J Liu Y 2016 WTAP expression predicts poor prognosis in malignant glioma patients J Mol Neurosci 60 131 136 10.1007/s12031-016-0788-6 27370540 

  129. 129 Sundar SJ Hsieh JK Manjila S Lathia JD Sloan A 2014 The role of cancer stem cells in glioblastoma Neurosurg Focus 37 E6 10.3171/2014.9.FOCUS14494 25434391 

  130. 130 Cui Q Shi H Ye P 2017 m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells Cell Rep 18 2622 2634 10.1016/j.celrep.2017.02.059 28297667 

  131. 131 Zhang S Zhao BS Zhou A 2017 m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stemlike cells by sustaining FOXM1 expression and cell proliferation program Cancer Cell 31 591 606 10.1016/j.ccell.2017.02.013 28344040 

  132. 132 Visvanathan A Patil V Arora A 2018 Essential role of METTL3-mediated m(6)A modification in glioma stemlike cells maintenance and radioresistance Oncogene 37 522 533 10.1038/onc.2017.351 28991227 

  133. 133 Zang L Kondengaden SM Che F Wang L Heng X 2018 Potential epigenetic-based therapeutic targets for glioma Front Mol Neurosci 11 408 10.3389/fnmol.2018.00408 30498431 

  134. 134 Ge L Zhang N Chen Z 2020 Level of N6-methyladenosine in peripheral blood RNA: a novel predictive biomarker for gastric cancer Clin Chem 66 342 351 10.1093/clinchem/hvz004 32040577 

  135. 135 Strick A von Hagen F Gundert L 2020 The N(6)-methyladenosine (m(6) A) erasers alkylation repair homo-logue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma BJU Int 125 617 624 10.1111/bju.15019 31985880 

  136. 136 Wang W Li J Lin F Guo J Zhao J 2020 Identification of N(6)-methyladenosine-related lncRNAs for patients with primary glioblastoma Neurosurg Rev [Online ahead of print] 10.1007/s10143-020-01238-x 31938968 

  137. 137 Tu Z Wu L Wang P 2020 N6-methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients Front Cell Dev Biol 8 642 10.3389/fcell.2020.00642 32793593 

  138. 138 Xiao L Li X Mu Z 2020 FTO inhibition enhances the anti-tumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in glioma Cancer Res 80 3945 3958 10.1158/0008-5472.CAN-20-0132 32680921 

  139. 139 Malacrida A Rivara M Di Domizio A 2020 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line Bioorg Med Chem 28 115300 10.1016/j.bmc.2019.115300 31937477 

  140. 140 Garcia-Campos MA Edelheit S Toth U 2019 Deciphering the "m(6)A code" via antibody-independent quantitative profiling Cell 178 731 747 10.1016/j.cell.2019.06.013 31257032 

  141. 141 Sas-Chen A Thomas JM Matzov D 2020 Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping Nature 583 638 643 10.1038/s41586-020-2418-2 32555463 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로