최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기BMB reports, v.53 no.11, 2020년, pp.551 - 564
Park, Chan-Woo (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) , Lee, Sung-Min (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) , Yoon, Ki-Jun (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Proper development of the nervous system is critical for its function, and deficits in neural development have been implicated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developin...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
1 Telley L Govindan S Prados J 2016 Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex Science 351 1443 1446 10.1126/science.aad8361 26940868
2 Yoon KJ Vissers C Ming GL Song H 2018 Epi-genetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence J Cell Biol 217 1901 1914 10.1083/jcb.201802117 29666150
3 Livneh I Moshitch-Moshkovitz S Amariglio N Rechavi G Dominissini D 2020 The m6A epitranscriptome: transcriptome plasticity in brain development and function Nat Rev Neurosci 21 36 51 10.1038/s41583-019-0244-z 31804615
4 Zhao BS Roundtree IA He C 2017 Post-transcriptional gene regulation by mRNA modifications Nat Rev Mol Cell Biol 18 31 42 10.1038/nrm.2016.132 27808276
5 Meyer KD Jaffrey SR 2017 Rethinking m(6)A readers, writers, and erasers Annu Rev Cell Dev Biol 33 319 342 10.1146/annurev-cellbio-100616-060758 28759256
6 Hussain S 2017 Shaping and reshaping transcriptome plasticity during evolution Trends Biochem Sci 42 682 684 10.1016/j.tibs.2017.06.009 28716332
7 Meyer KD Saletore Y Zumbo P Elemento O Mason CE Jaffrey SR 2012 Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons Cell 149 1635 1646 10.1016/j.cell.2012.05.003 22608085
8 Liu J Li K Cai J 2020 Landscape and regulation of m(6)A and m(6)Am Methylome across human and mouse tissues Mol Cell 77 426 440 10.1016/j.molcel.2019.09.032 31676230
9 Liu J An Z Luo J Li J Li F Zhang Z 2020 Episo: quantitative estimation of RNA 5-methylcytosine at isoform level by high-throughput sequencing of RNA treated with bisulfite Bioinformatics 36 2033 2039 10.1093/bioinformatics/btz900 31794005
10 Li X Zhu P Ma S 2015 Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome Nat Chem Biol 11 592 597 10.1038/nchembio.1836 26075521
11 Dominissini D Moshitch-Moshkovitz S Schwartz S 2012 Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq Nature 485 201 206 10.1038/nature11112 22575960
12 Meyer KD Patil DP Zhou J 2015 5' UTR m(6)A Promotes Cap-Independent Translation Cell 163 999 1010 10.1016/j.cell.2015.10.012 26593424
13 Liu J Yue Y Han D 2014 A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation Nat Chem Biol 10 93 95 10.1038/nchembio.1432 24316715
14 Jia G Fu Y Zhao X 2011 N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO Nat Chem Biol 7 885 887 10.1038/nchembio.687 22002720
15 Zheng G Dahl JA Niu Y 2013 ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility Mol Cell 49 18 29 10.1016/j.molcel.2012.10.015 23177736
16 Wei J Liu F Lu Z 2018 Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm Mol Cell 71 973 985 10.1016/j.molcel.2018.08.011 30197295
17 Mauer J Jaffrey SR 2018 FTO, m(6) Am , and the hypothesis of reversible epitranscriptomic mRNA modifications FEBS Lett 592 2012 2022 10.1002/1873-3468.13092 29754392
18 Wang X Zhao BS Roundtree IA 2015 N(6)-methyladenosine modulates messenger RNA translation efficiency Cell 161 1388 1399 10.1016/j.cell.2015.05.014 26046440
19 Du H Zhao Y He J 2016 YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex Nat Commun 7 12626 10.1038/ncomms12626 27558897
20 Park OH Ha H Lee Y 2019 Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex Mol Cell 74 494 507 10.1016/j.molcel.2019.02.034 30930054
21 Shi H Wang X Lu Z 2017 YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA Cell Res 27 315 328 10.1038/cr.2017.15 28106072
22 Zaccara S Jaffrey SR 2020 A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA Cell 181 1582 1595 10.1016/j.cell.2020.05.012 32492408
24 Xiao W Adhikari S Dahal U 2016 Nuclear m(6)A reader YTHDC1 regulates mRNA splicing Mol Cell 61 507 519 10.1016/j.molcel.2016.01.012 26876937
25 Roundtree IA Luo GZ Zhang Z 2017 YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs Elife 6 e31311 10.7554/eLife.31311 28984244
26 Patil DP Chen CK Pickering BF 2016 m(6)A RNA methylation promotes XIST-mediated transcriptional repression Nature 537 369 373 10.1038/nature19342 27602518
27 Mao Y Dong L Liu XM 2019 m(6)A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2 Nat Commun 10 5332 10.1038/s41467-019-13317-9 31767846
28 Alarcon CR Lee H Goodarzi H Halberg N Tavazoie SF 2015 N6-methyladenosine marks primary microRNAs for processing Nature 519 482 485 10.1038/nature14281 25799998
29 Huang H Weng H Sun W 2018 Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation Nat Cell Biol 20 285 295 10.1038/s41556-018-0045-z 29476152
30 Wu R Li A Sun B 2019 A novel m(6)A reader Prrc2a controls oligodendroglial specification and myelination Cell Res 29 23 41 10.1038/s41422-018-0113-8 30514900
31 Dimitrova DG Teysset L Carre C 2019 RNA 2'-O-methylation (Nm) modification in human diseases Genes (Basel) (Basel) 117 10.3390/genes10020117 30764532
32 Byszewska M Smietanski M Purta E Bujnicki JM 2014 RNA methyltransferases involved in 5' cap biosynthesis RNA Biol 11 1597 1607 10.1080/15476286.2015.1004955 25626080
33 Dai Q Moshitch-Moshkovitz S Han D 2017 Nm-seq maps 2'-O-methylation sites in human mRNA with base precision Nat Methods 14 695 698 10.1038/nmeth.4294 28504680
34 Guy MP Phizicky EM 2015 Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes RNA 21 61 74 10.1261/rna.047639.114 25404562
35 Leschziner GD Coffey AJ Andrew T 2011 Q8IYL2 is a candidate gene for the familial epilepsy syndrome of Partial Epilepsy with Pericentral Spikes (PEPS) Epilepsy Res 96 109 115 10.1016/j.eplepsyres.2011.05.010 21658913
36 Reichow SL Hamma T Ferre-D'Amare AR Varani G 2007 The structure and function of small nucleolar ribonucleoproteins Nucleic Acids Res 35 1452 1464 10.1093/nar/gkl1172 17284456
37 Belanger F Stepinski J Darzynkiewicz E Pelletier J 2010 Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase J Biol Chem 285 33037 33044 10.1074/jbc.M110.155283 20713356
38 Khoddami V Cairns BR 2013 Identification of direct targets and modified bases of RNA cytosine methyltransferases Nat Biotechnol 31 458 464 10.1038/nbt.2566 23604283
39 Yang X Yang Y Sun BF 2017 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader Cell Res 27 606 625 10.1038/cr.2017.55 28418038
40 Xing J Yi J Cai X 2015 NSun2 promotes cell growth via elevating cyclin-dependent kinase 1 translation Mol Cell Biol 35 4043 4052 10.1128/MCB.00742-15 26391950
41 Motorin Y Lyko F Helm M 2010 5-methylcytosine in RNA: detection, enzymatic formation and biological functions Nucleic Acids Res 38 1415 1430 10.1093/nar/gkp1117 20007150
42 Basanta-Sanchez M Wang R Liu Z 2017 TET1-mediated oxidation of 5-formylcytosine (5fC) to 5-carboxycytosine (5caC) in RNA Chembiochem 18 72 76 10.1002/cbic.201600328 27805801
43 Jobert L Skjeldam HK Dalhus B 2013 The human base excision repair enzyme SMUG1 directly interacts with DKC1 and contributes to RNA quality control Mol Cell 49 339 345 10.1016/j.molcel.2012.11.010 23246433
44 Schwartz S Bernstein DA Mumbach MR 2014 Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA Cell 159 148 162 10.1016/j.cell.2014.08.028 25219674
45 Carlile TM Rojas-Duran MF Zinshteyn B Shin H Bartoli KM Gilbert WV 2014 Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells Nature 515 143 146 10.1038/nature13802 25192136
46 Duan J Li L Lu J Wang W Ye K 2009 Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase Mol Cell 34 427 439 10.1016/j.molcel.2009.05.005 19481523
47 Carlile TM Martinez NM Schaening C 2019 mRNA structure determines modification by pseudouridine synthase 1 Nat Chem Biol 15 966 974 10.1038/s41589-019-0353-z 31477916
48 Yoon KJ Ringeling FR Vissers C 2017 Temporal control of mammalian cortical neurogenesis by m(6)A methylation Cell 171 877 889 10.1016/j.cell.2017.09.003 28965759
49 Wang Y Li Y Yue M 2018 N(6)-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications Nat Neurosci 21 195 206 10.1038/s41593-017-0057-1 29335608
50 Li Y Xia L Tan K 2020 N(6)-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2 Nat Genet 52 870 877 10.1038/s41588-020-0677-3 32778823
51 Yao B Christian KM He C Jin P Ming GL Song H 2016 Epigenetic mechanisms in neurogenesis Nat Rev Neurosci 17 537 549 10.1038/nrn.2016.70 27334043
52 Li M Zhao X Wang W 2018 Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice Genome Biol 19 69 10.1186/s13059-018-1436-y 29855337
53 Guy MP Shaw M Weiner CL 2015 Defects in tRNA anticodon loop 2'-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1 Hum Mutat 36 1176 1187 10.1002/humu.22897 26310293
54 Higa-Nakamine S Suzuki T Uechi T 2012 Loss of ribosomal RNA modification causes developmental defects in zebrafish Nucleic Acids Res 40 391 398 10.1093/nar/gkr700 21908402
55 Bouffard S Dambroise E Brombin A 2018 Fibrillarin is essential for S-phase progression and neuronal differentiation in zebrafish dorsal midbrain and retina Dev Biol 437 1 16 10.1016/j.ydbio.2018.02.006 29477341
56 Cavaille J Buiting K Kiefmann M 2000 Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization Proc Natl Acad Sci U S A 97 14311 14316 10.1073/pnas.250426397 11106375
57 Peters J 2008 Prader-Willi and snoRNAs Nat Genet 40 688 689 10.1038/ng0608-688 18509309
58 Rai K Chidester S Zavala CV 2007 Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish Genes Dev 21 261 266 10.1101/gad.1472907 17289917
59 Goll MG Kirpekar F Maggert KA 2006 Methyl-ation of tRNAAsp by the DNA methyltransferase homo-log Dnmt2 Science 311 395 398 10.1126/science.1120976 16424344
60 Blanco S Dietmann S Flores JV 2014 Aberrant methylation of tRNAs links cellular stress to neurodevelopmental disorders EMBO J 33 2020 2039 10.15252/embj.201489282 25063673
61 Flores JV Cordero-Espinoza L Oeztuerk-Winder F 2017 Cytosine-5 RNA methylation regulates neural stem cell differentiation and motility Stem Cell Reports 8 112 124 10.1016/j.stemcr.2016.11.014 28041877
62 Tuorto F Liebers R Musch T 2012 RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis Nat Struct Mol Biol 19 900 905 10.1038/nsmb.2357 22885326
63 Angelova MT Dimitrova DG Dinges N 2018 The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders Front Bioeng Biotechnol 6 46 10.3389/fbioe.2018.00046 29707539
64 Shaheen R Han L Faqeih E 2016 A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition Hum Genet 135 707 713 10.1007/s00439-016-1665-7 27055666
65 Heiss NS Bachner D Salowsky R Kolb A Kioschis P Poustka A 2000 Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1 Genomics 67 153 163 10.1006/geno.2000.6227 10903840
66 Xu H Dzhashiashvili Y Shah A 2020 m(6)A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination Neuron 105 293 309 10.1016/j.neuron.2019.12.013 31901304
67 Chizhikov V Millen KJ 2003 Development and malformations of the cerebellum in mice Mol Genet Metab 80 54 65 10.1016/j.ymgme.2003.08.019 14567957
68 Wang CX Cui GS Liu X 2018 METTL3-mediated m6A modification is required for cerebellar development PLoS Biol 16 e2004880 10.1371/journal.pbio.2004880 29879109
69 Ma C Chang M Lv H 2018 RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum Genome Biol 19 68 10.1186/s13059-018-1435-z 29855379
70 Ma DK Bonaguidi MA Ming GL Song H 2009 Adult neural stem cells in the mammalian central nervous system Cell Res 19 672 682 10.1038/cr.2009.56 19436263
71 Chen J Zhang YC Huang C 2019 m(6)A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2 Genomics Pro-teomics Bioinformatics 17 154 168 10.1016/j.gpb.2018.12.007 31154015
72 Li L Zang L Zhang F 2017 Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis Hum Mol Genet 26 2398 2411 10.1093/hmg/ddx128 28398475
73 Batool S Raza H Zaidi J Riaz S Hasan S Syed NI 2019 Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders J Neurophysiol 121 1381 1397 10.1152/jn.00833.2018 30759043
74 Chang M Lv H Zhang W 2017 Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain Open Biol 7 170166 10.1098/rsob.170166 28931651
75 Engel M Eggert C Kaplick PM 2018 The role of m(6)A/m-RNA methylation in stress response regulation Neuron 99 389 403 10.1016/j.neuron.2018.07.009 30048615
76 Koranda JL Dore L Shi H 2018 Mettl14 is essential for epitranscriptomic regulation of striatal function and learning Neuron 99 283 292 10.1016/j.neuron.2018.06.007 30056831
77 Shi H Zhang X Weng YL 2018 m(6)A facilitates hippocampus-dependent learning and memory through YTHDF1 Nature 563 249 253 10.1038/s41586-018-0666-1 30401835
78 Merkurjev D Hong WT Iida K 2018 Synaptic N(6)-methyladenosine (m(6)A) epitranscriptome reveals functional partitioning of localized transcripts Nat Neurosci 21 1004 1014 10.1038/s41593-018-0173-6 29950670
79 Zhang Z Wang M Xie D 2018 METTL3-mediated N(6)-methyladenosine mRNA modification enhances long-term memory consolidation Cell Res 28 1050 1061 10.1038/s41422-018-0092-9 30297870
80 Hou Y Dan X Babbar M 2019 Ageing as a risk factor for neurodegenerative disease Nat Rev Neurol 15 565 581 10.1038/s41582-019-0244-7 31501588
81 Casella G Tsitsipatis D Abdelmohsen K Gorospe M 2019 mRNA methylation in cell senescence Wiley Inter-discip Rev RNA 10 e1547 10.1002/wrna.1547 31144457
82 Min KW Zealy RW Davila S 2018 Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability Aging Cell 17 e12753 10.1111/acel.12753 29573145
83 Lee MY Leonardi A Begley TJ Melendez JA 2020 Loss of epitranscriptomic control of selenocysteine utilization engages senescence and mitochondrial reprogramming Redox Biol 28 101375 10.1016/j.redox.2019.101375 31765888
84 Weng YL Wang X An R 2018 Epitranscriptomic m(6)A regulation of axon regeneration in the adult mammalian nervous system Neuron 97 313 325 10.1016/j.neuron.2017.12.036 29346752
85 Cumming TB Brodtmann A 2011 Can stroke cause neurodegenerative dementia? Int J Stroke 6 416 424 10.1111/j.1747-4949.2011.00666.x 21951407
86 Chokkalla AK Mehta SL Kim T Chelluboina B Kim J Vemuganti R 2019 Transient focal ischemia significantly alters the m(6)A epitranscriptomic tagging of RNAs in the brain Stroke 50 2912 2921 10.1161/STROKEAHA.119.026433 31436138
87 Fan L Mao C Hu X 2019 New insights into the pathogenesis of Alzheimer's disease Front Neurol 10 1312 10.3389/fneur.2019.01312 31998208
88 Keller L Xu W Wang HX Winblad B Fratiglioni L Graff C 2011 The obesity related gene, FTO, interacts with APOE, and is associated with Alzheimer's disease risk: a prospective cohort study J Alzheimers Dis 23 461 469 10.3233/JAD-2010-101068 21098976
89 Reitz C Tosto G Mayeux R Luchsinger JA Group N-LNFS Alzheimer's disease neuroimaging I 2012 Genetic variants in the fat and obesity associated (FTO) gene and risk of Alzheimer's disease PLoS One 7 e50354 10.1371/journal.pone.0050354 23251365
90 Li H Ren Y Mao K 2018 FTO is involved in Alzheimer's disease by targeting TSC1-mTOR-Tau signaling Biochem Biophys Res Commun 498 234 239 10.1016/j.bbrc.2018.02.201 29501742
91 Liu X Meng P Yang G Zhang M Peng S Zhai MZ 2020 Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress BMC Genomics 21 474 10.1186/s12864-020-06879-2 32650719
92 Westmark CJ Maloney B Alisch RS Sokol DK Lahiri DK 2020 FMRP regulates the nuclear export of Adam9 and Psen1 mRNAs: secondary analysis of an N(6)-methyladenosine dataset Sci Rep 10 10781 10.1038/s41598-020-66394-y 32612155
93 Boza-Serrano A Yang Y Paulus A Deierborg T 2018 Innate immune alterations are elicited in micro-glial cells before plaque deposition in the Alzheimer's disease mouse model 5xFAD Sci Rep 8 1550 10.1038/s41598-018-19699-y 29367720
94 Balestrino R Schapira AHV 2020 Parkinson disease Eur J Neurol 27 27 42 10.1111/ene.14108 31631455
95 Chen X Yu C Guo M 2019 Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death ACS Chem Neurosci 10 2355 2363 10.1021/acschemneuro.8b00657 30835997
96 Hess ME Hess S Meyer KD 2013 The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry Nat Neurosci 16 1042 1048 10.1038/nn.3449 23817550
97 Peng S Xiao W Ju D 2019 Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1 Sci Transl Med 11 eaau7116 10.1126/scitranslmed.aau7116 30996080
98 Vissers LE Gilissen C Veltman JA 2016 Genetic studies in intellectual disability and related disorders Nat Rev Genet 17 9 18 10.1038/nrg3999 26503795
99 Iwase S Berube NG Zhou Z 2017 Epigenetic etiology of intellectual disability J Neurosci 37 10773 10782 10.1523/JNEUROSCI.1840-17.2017 29118205
100 Zhang F Kang Y Wang M 2018 Fragile X mental retardation protein modulates the stability of its m6A-mark-ed messenger RNA targets Hum Mol Genet 27 3936 3950 10.1093/hmg/ddy292 30107516
101 Ignatova VV Stolz P Kaiser S 2020 The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs Genes Dev 34 715 729 10.1101/gad.333369.119 32217665
102 Richard EM Polla DL Assir MZ 2019 Bi-allelic variants in METTL5 cause autosomal-recessive intellectual disability and microcephaly Am J Hum Genet 105 869 878 10.1016/j.ajhg.2019.09.007 31564433
103 de Brouwer APM Abou Jamra R Kortel N 2018 Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior Am J Hum Genet 103 1045 1052 10.1016/j.ajhg.2018.10.026 30526862
104 Bykhovskaya Y Casas K Mengesha E Inbal A Fischel-Ghodsian N 2004 Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA) Am J Hum Genet 74 1303 1308 10.1086/421530 15108122
105 Cao M Dona M Valentino ML 2016 Clinical and molecular study in a long-surviving patient with MLASA syndrome due to novel PUS1 mutations Neurogenetics 17 65 70 10.1007/s10048-015-0465-x 26556812
106 Abbasi-Moheb L Mertel S Gonsior M 2012 Mutations in NSUN2 cause autosomal-recessive intellectual disability Am J Hum Genet 90 847 855 10.1016/j.ajhg.2012.03.021 22541559
107 Martinez FJ Lee JH Lee JE 2012 Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome J Med Genet 49 380 385 10.1136/jmedgenet-2011-100686 22577224
108 Khan MA Rafiq MA Noor A 2012 Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability Am J Hum Genet 90 856 863 10.1016/j.ajhg.2012.03.023 22541562
109 Willems P Vits L Buntinx I Raeymaekers P Van Broeckhoven C Ceulemans B 1993 Localization of a gene responsible for nonspecific mental retardation (MRX9) to the pericentromeric region of the X chromosome Genomics 18 290 294 10.1006/geno.1993.1468 8288232
110 Hamel BC Smits AP van den Helm B 1999 Four families (MRX43, MRX44, MRX45, MRX52) with nonspecific X-linked mental retardation: clinical and psychometric data and results of linkage analysis Am J Med Genet 85 290 304 10.1002/(SICI)1096-8628(19990730)85:3<290::AID-AJMG21>3.0.CO;2-H 10398246
111 Dai L Xing L Gong P 2008 Positive association of the FTSJ1 gene polymorphisms with nonsyndromic X-linked mental retardation in young Chinese male subjects J Hum Genet 53 592 597 10.1007/s10038-008-0287-x 18401546
112 Wang R Lei T Fu F 2019 Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in South China Pediatr Neonatol 60 35 42 10.1016/j.pedneo.2018.03.006 29631977
113 Giorda R Bonaglia MC Beri S 2009 segmental duplications mediate a recurrent dup(X)(p11. 22-p11.23) associated with mental retardation, speech delay, and EEG anomalies in males and females Am J Hum Genet 85 394 400 10.1016/j.ajhg.2009.08.001 19716111
114 Zhang X Wang F Wang Z 2020 ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m(6)A-dependent manner Ann Transl Med 8 646 10.21037/atm-20-3079 32566583
115 Jensen LR Garrett L Holter SM 2019 A mouse model for intellectual disability caused by mutations in the X-linked 2'Omethyltransferase Ftsj1 gene Biochim Biophys Acta Mol Basis Dis 1865 2083 2093 10.1016/j.bbadis.2018.12.011 30557699
116 Bai L Tang Q Zou Z 2018 m6A demethylase FTO regulates dopaminergic neurotransmission deficits caused by arsenite Toxicol Sci 165 431 446 10.1093/toxsci/kfy172 29982692
117 Choudhry Z Sengupta SM Grizenko N 2013 Association between obesity-related gene FTO and ADHD Obesity (Silver Spring) (Silver Spring) E738 744 10.1002/oby.20444 23512716
118 Oldmeadow C Mossman D Evans TJ 2014 Com-bined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci J Psychiatr Res 52 44 49 10.1016/j.jpsychires.2014.01.011 24507884
119 Yoon KJ Ming GL Song H 2018 Epitranscriptomes in the adult mammalian brain: dynamic changes regulate behavior Neuron 99 243 245 10.1016/j.neuron.2018.07.019 30048610
120 Barbon A Magri C 2020 RNA editing and modifications in mood disorders Genes (Basel) (Basel) 872 10.3390/genes11080872 32752036
121 Du T Rao S Wu L 2015 An association study of the m6A genes with major depressive disorder in Chinese Han population J Affect Disord 183 279 286 10.1016/j.jad.2015.05.025 26047305
122 Bian J Zhuo Z Zhu J 2020 Association between METTL3 gene polymorphisms and neuroblastoma susceptibility: A nine-centre case-control study J Cell Mol Med 24 9280 9286 10.1111/jcmm.15576 32615646
123 Zhuo Z Lu H Zhu J 2020 METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eight-center case-control study Mol Ther Nucleic Acids 22 17 26 10.1016/j.omtn.2020.08.009 32891980
124 Cheng J Xu L Deng L 2020 RNA N(6)-methyladenosine modification is required for miR-98/MYCN axis-mediated inhibition of neuroblastoma progression Sci Rep 10 13624 10.1038/s41598-020-64682-1 32788584
125 Wang Z Cheng H Xu H Yu X Sui D 2020 A five-gene signature derived from m6A regulators to improve prognosis prediction of neuroblastoma Cancer Biomark 28 275 284 10.3233/CBM-191196 32176634
126 Louis DN Ohgaki H Wiestler OD 2007 The 2007 WHO classification of tumours of the central nervous system Acta Neuropathol 114 97 109 10.1007/s00401-007-0243-4 17618441
127 Stupp R Roila F Group EGW 2009 Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up Ann Oncol 20 Suppl 20 Suppl 4 126 128 10.1093/annonc/mdp151 19454432
128 Xi Z Xue Y Zheng J Liu X Ma J Liu Y 2016 WTAP expression predicts poor prognosis in malignant glioma patients J Mol Neurosci 60 131 136 10.1007/s12031-016-0788-6 27370540
129 Sundar SJ Hsieh JK Manjila S Lathia JD Sloan A 2014 The role of cancer stem cells in glioblastoma Neurosurg Focus 37 E6 10.3171/2014.9.FOCUS14494 25434391
130 Cui Q Shi H Ye P 2017 m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells Cell Rep 18 2622 2634 10.1016/j.celrep.2017.02.059 28297667
131 Zhang S Zhao BS Zhou A 2017 m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stemlike cells by sustaining FOXM1 expression and cell proliferation program Cancer Cell 31 591 606 10.1016/j.ccell.2017.02.013 28344040
132 Visvanathan A Patil V Arora A 2018 Essential role of METTL3-mediated m(6)A modification in glioma stemlike cells maintenance and radioresistance Oncogene 37 522 533 10.1038/onc.2017.351 28991227
133 Zang L Kondengaden SM Che F Wang L Heng X 2018 Potential epigenetic-based therapeutic targets for glioma Front Mol Neurosci 11 408 10.3389/fnmol.2018.00408 30498431
135 Strick A von Hagen F Gundert L 2020 The N(6)-methyladenosine (m(6) A) erasers alkylation repair homo-logue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma BJU Int 125 617 624 10.1111/bju.15019 31985880
136 Wang W Li J Lin F Guo J Zhao J 2020 Identification of N(6)-methyladenosine-related lncRNAs for patients with primary glioblastoma Neurosurg Rev [Online ahead of print] 10.1007/s10143-020-01238-x 31938968
137 Tu Z Wu L Wang P 2020 N6-methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients Front Cell Dev Biol 8 642 10.3389/fcell.2020.00642 32793593
138 Xiao L Li X Mu Z 2020 FTO inhibition enhances the anti-tumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in glioma Cancer Res 80 3945 3958 10.1158/0008-5472.CAN-20-0132 32680921
139 Malacrida A Rivara M Di Domizio A 2020 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line Bioorg Med Chem 28 115300 10.1016/j.bmc.2019.115300 31937477
140 Garcia-Campos MA Edelheit S Toth U 2019 Deciphering the "m(6)A code" via antibody-independent quantitative profiling Cell 178 731 747 10.1016/j.cell.2019.06.013 31257032
141 Sas-Chen A Thomas JM Matzov D 2020 Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping Nature 583 638 643 10.1038/s41586-020-2418-2 32555463
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.