$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전자약 연구개발 동향
R&D Trends in Bioelectronic Medicines 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.35 no.3, 2020년, pp.98 - 110  

김용희 (뇌휴먼인터페이스연구실) ,  정상돈 (뇌휴먼인터페이스연구실) ,  이성규 (지능형센서연구실) ,  김혜진 (지능형센서연구실) ,  변춘원 (실감디스플레이연구실) ,  이정익 (실감소자원천연구본부) ,  송기봉 (미래원천연구본부) ,  강성원 (ICT창의연구소)

Abstract AI-Helper 아이콘AI-Helper

Precise detection and modulation of electrical signal patterns passing through peripheral nerves connecting organs and brainstems, referred to as electroceuticals or bioelectronic medicines, have emerged as a new type of treatments for neural disorders and chronic diseases. With the rapid advancemen...

주제어

표/그림 (8)

참고문헌 (49)

  1. C. Bouton, "Bioelectronic medicine: molecular mechanisms," SRC/NSF Workshop on Microsyst for Bioelecton Med, IBM Conference Center, Washington, D.C., USA, Apr. 12-13, 2017. 

  2. S. Mishra, "Electroceuticals in medicine-The brave new future," Indian Heart J., vol. 69, no. 5, 2017, pp. 685-686. 

  3. B. J. Seicol et al., "Neuromodulation of metabolic functions: from pharmaceuticals to bioelectronics to biocircuits," J. Biol. Eng., vol. 13, 2019, Article no. 67. 

  4. K. Devarakonda and S. Stanley, "Investigating metabolic regulation using targeted neuromodulation," Ann. New Yorl Academy Sci., vol. 1411, no. 1, 2018, pp. 83-95. 

  5. K. Famm, "A-jump start for elelctroceuticals," Nature, vol. 496, no. 11, 2013, pp. 159-161. 

  6. R. Carnagarin et al., "Autonomic regulation of glucose homeostasis: a specific role for sympathetic nervous system activation," Curr. Diab. Rep., vol. 18, no. 11, 2018, doi: 10.1007/s11892-018-1069-2. 

  7. P. S. Olofsson and K. J. Tracey, "Bioelectronic medicine: technology targeting molecular mechanisms for therapy," J. Intern. Med., vol. 282, no. 1, 2017, doi: 10.1111/joim.12624. 

  8. G. de Lartigue, "Role of the vagus nerve in the development and treatment of diet-induced obesity," J. Physiol., vol. 594, no. 20, 2016, doi: 10.1113/JP271538. 

  9. H. Divanovic et al., "Effects of electrical stimulation as a new method of treating diabetes on animal models: review," IFMBE Proc., vol. 62, 2017, doi: 10.1007/978-981-10-4166-2_38. 

  10. B. Thorens, "Neural regulation of pancreatic islet cell mass and function," Diabetes Obes. Metab., vol. 16, 2014, pp. 87-95. 

  11. U. S. Food and Drug Administration, "VNS therapy system: FDA," premarket approval (PMA)-Depression (Online) (updated 2005). 

  12. J. P. O'Reardon, P. Cristancho and A.D. Peshek, "Vagus nerve stimulation (VNS) and treatment of depression: to the brainstem and beyond," Psychiatry (Edgmont), vol. 3, no. 5, 2006, pp. 54-63. 

  13. E. N. Marieb, "Human anatomy," 6th ed., Benjamin Cummings, 2010. 

  14. L. K. McCorry, "Physiology of the autonomic nervous system," Am. J. Pharm. Educ., vol. 71, no. 4, 2007, Article no. 78, doi: 10.5688/aj710478. 

  15. F. S. Routledge et al., "Improvements in heart rate variability with exercise therapy," Can. J. Cardiol., vol. 26, 2010, pp. 303-312. 

  16. A. Nesvold et al., "Increased heart rate vatiability during nondirective meditation," Eur. J. Prev. Cardiol., vol. 19, 2012, pp. 773-780. 

  17. S. Breit et al., "Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders," Front Psychiatry, vol. 9, 2018, Article no. 44, doi:10.3389/fpsyt.2018.00044. 

  18. B. Bonaz et al., "Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflamatory pathway," Neurogastroenterol Motil, vol. 25, no. 3, 2013, pp. 208-221. 

  19. K. J. Tracey, "The inflamatory reflex," Nature, vol. 420, 2002, pp. 853-859. 

  20. S. C. Payne, J. B. Furness and M. J. Stebbing, "Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms," Nat. Rev. Gastro. Hepat., vol. 16, no. 2, 2019, pp. 89-105. 

  21. U. S. Food and Drug Administration, "VNS therapy system: FDA, premarket approval (PMA)-Epilepsy" (Online) (updated 1997). 

  22. J. M. Morton et al., "Effect of vagal nerve blockade on moderate obesity with an obesity-related comorbid condition: the ReCharge Study," Obes. Surg., vol. 26, 2016, pp. 983-989. 

  23. U. S. Food and Drug Administration, "Devices@FDA: Medtronic interstim sacral nerve stimulation therapy system" (Online) (updated 2011). 

  24. L. V. Borovikova et al., "Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin," Nature, vol. 405, 2000, pp. 458-461. 

  25. F. A. Koopman et al., "Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis," Proc. Natl. Acad. Sci. USA, vol. 113, no. 29, 2016, pp. 8284-8289. 

  26. World Health Organization, "Global Report on Diabetes," 2016. 

  27. S. Trevitt, S. Simpson, and A. Wood, "Artificial pancreas device systems for the closed-loop control of type 1 diabetes: What systems are in development?" J. Diabetes Sci. Technol., vol. 10, no. 3, 2016, pp. 714-723. 

  28. A. Haidar et al., "Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled cross over trial," Lancet Diabetes Endocrinol., vol. 3, 2015, pp. 17-26. 

  29. A. Guemes and P. Georgiou, "Review of the role of the nervous system in glucose homeostasis and future perspectives towards the management of diabetes," Bioelectron Med., vol. 4, 2018, doi: 10.1186/s42234-018-0009-4. 

  30. C. M. Hales, "Prevalence of obesity among adults and youth: United States 2015-2016," NCHS Data Brief, vol. 288, 2017, pp. 1-8. 

  31. E. A, Katsareli and G. V. Dedoussis, "Biomarkers in the Field of obesity and its related comorbidities," Expert Opin. Ther. Targets, vol. 18, 2014. pp. 385-401. 

  32. R. Kassir et al., "Effects of vagus nerve stimulation on weight loss and associated disorders: a therapeutic perspective," J. Med. Diagn Meth., vol. 3, 2014, doi: 10.4172/2168-9784.1000e110. 

  33. M. L. Ganz et al., "Economic costs of over active bladder in the United States," Urology, vol. 75, 2010, pp. 526-532. 

  34. J. W. Boggs et al. "Frequency dependent selection of reflexes by pudendal afferents in the cat," J. Physiol., vol. 577, 2006, pp. 115-126. 

  35. X. Navarro et al., "A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems," J. Peripher Nerv. Syst., vol. 10, 2005, pp. 229-258. 

  36. E. H. Rijnbeek, N. Eleveld, and W. Olthuis, "Update on peripheral nerve electrodes for closed-loop neuroprosthetics," Front Neurosci, vol. 12, 2018, doi: 10.3389/fnins.2018.00350. 

  37. C. Russell, D. Roche, and S. Chakrabarty, "Peripheral nerve bionic interface: a review of electrodes," Int. J. Intell. Robot. Appl., vol. 3, 2019, pp. 11-18. 

  38. S. Eldabe, E. Buchser, and R.V. Duarte, "Complications of spinal cord stimulation and peripheral nerve stimulation techniques: a review of the literature," Pain Med, vol. 17, 2016, pp. 325-336. 

  39. V. H. Desai et al., "Chronic sensory-motor activity in behaving animals using regenerative multi-electrode interfaces," in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Chicago, IL, USA, Aug. 2014, pp. 1973-1976. 

  40. X. A. Maul et al., "Microcurrent technology for rapid relief of sinus pain: a randomized placebo-controlled, double-blinded clinical trial," Int. Forum Allergy Rhinol., vol. 9, 2019, pp. 352-356. 

  41. K. Birmingham et al., "Bioelectronic medicines: a research roadmap," Nat. Rev. Drug Discov., vol. 13, 2014, pp. 399-400. 

  42. NIH, https://ncats.nih.gov/sparc 

  43. S. F. Cogan et al., "Tissue damage thresholds during therapeutic electrical stimulation," J. Neural Eng., vol. 13, 2016, doi: 10.1088/1741-2560/13/2/021001. 

  44. Reports and Data, "Electroceuticals / bioelectric medicine market analysis," 2019. 

  45. Markets & Markets, "Electroceuticals / bioelectric medicine market by product (pacemakers, cochlear implants, spinal cord stimulators), type of device (implantable, non-invasive), application (arrhythmia, depression, migraine), end user (hospitals) - Global Forecast to 2021." 

  46. Verified Market Research, "Global electroceuticals/ bioelectric medicine market size by type, by product, by application, by geographic scope and forecast," 2019. 

  47. Alliance for Advancing Bioelectronic Medicine, "Building a bioelectronic medicine movement 2019: insights from leaders in industry, academia, and research," Bioelectron Med, vol. 6, 2020, 1. 

  48. https://www/weforum.org /agenda/2018/09/top-10-emerging-technologies-of-2018. 

  49. https://www.idtechex.com/en/research-article/six-firsts-inelectroceutical-approvals-of-2019/17604. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로