$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

세라믹 3D 프린팅 소개와 치과분야에서의 활용가능성
3D printing of Ceramics: Introduction and the Feasibility in Dentistry 원문보기

大韓齒科醫師協會誌 = The journal of the Korean dental association, v.58 no.7, 2020년, pp.448 - 459  

오승한 (원광대학교 치과대학 치과생체재료학교실 및 생체재료.매식 연구소)

Abstract AI-Helper 아이콘AI-Helper

In addition to extensive research on polymer and metal three-dimensional (3D) printing, ceramic 3D printing has recently been highlighted in various fields. The biggest advantage of 3D printing has the ability to easily create any complex shape. This review introduces the 3D printing technology of c...

주제어

참고문헌 (48)

  1. Kodama H. Automatic method for fabricating cubic shapes, as a three-dimensional information display method. Journal of the Institute Electronics, Information and Communication Engineers. 1981; J64-C:237-241. 

  2. Hull C. Apparatus for production of three-dimensional objects by stereolithography. 1986. US 4575330A. 

  3. Crump S. Apparatus and method for creating three-dimensional objects. 1989. US 5121329A. 

  4. Deckard C, Method and apparatus for producing parts by selective sintering. 1989. US4863538A. 

  5. https://reprap.org/mediawiki/index.php?titleRepRap&oldid186891. 

  6. 한국치과재료학교수협의회. 치과재료학 제7판. 군자출판사. 2015. 

  7. Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer. 2014. 

  8. Marcus HL, Beaman JJ, Barlow JW, Bourell DL. Solid freeform fabrication-powder processing. Am Ceram Soc Bull. 1990;69(6):1030-1031. 

  9. Sachs E, Cima M, Cornie J. Three-dimensional printing: Rapid tooling and prototypes directly from a CAD model. CIRP Ann-Manuf-Techn. 1990;39(1):201-204. 

  10. Jacobs PF, Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers. 1992. 

  11. ISO/ASTM, 17296 Standard on Additive Manufacturing (AM) Technologies. 

  12. Griffith ML, Halloran JW. Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc. 1996;79(10):2601-2608. 

  13. Chen Z, Li D, Zhou W, Wang L. Curing characteristics of ceramic stereolithography for an aqueous-based silica suspension. Proceedings of the Institution of Mechanical Engineers, Part B: J Eng Manuf. 2010; 224(4):641-651. 

  14. Lombardo SJ, Minimum time heating cycles for diffusion-controlled binder removal from ceramic green bodies. J Am Ceram Soc. 2015;98(1):57-65. 

  15. Gentry SP, Halloran JW. Depth and width of cured lines in photopolymerizable ceramic suspensions. J Eur Ceram Soc. 2013;33(10):1981-1988. 

  16. Zimbeck W, Pope M, RiceR. Microstructures and strengths of metals and ceramics made by photopolymer-based rapid prototyping. Solid Freeform Fabrication Symposium. 1996. 411-418. 

  17. Nakamoto T. Yamaguchi K. Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer, Micro Machine and Human Science, 1996, Proceedings of the Seventh International Symposium. 1996. 53-58. 

  18. He R, Liu W, Wu Z, An D, Huang M, Wu H, Jiang Q, Ji X, Wu S, Xie Z. Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method. Ceram Int. 2018;44:3412-3416. 

  19. Schwentenwein M, Homa J. Additive manufacturing of dense alumina ceramics. Int J Appl Ceram Tec. 2015;12:1-7. 

  20. Felzmann R, Gruber S, Mitteramskogler G, Tesavibul P, Boccaccini AR, Liska R, Stampfl J. Lithography-based additive manufacturing of cellular ceramic structures. Adv Eng Mater. 2012;14:1052-1058. 

  21. Tesavibul P, Felzmann R, Gruber S, Liska R, Thompson I, Boccaccini AR, Stampfl J. Processing of 45S5 Bioglass(R) by lithography-based additive manufacturing. Mater Lett. 2012;74:81-84. 

  22. Le HP. Progress and trends in ink-jet printing technology. J Imaging Sci Techn. 1998;42:49-62. 

  23. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22673-22685. 

  24. Peymannia M, Soleimani-Gorgani A, Ghahari M, Jalili M. The effect of different dispersants on the physical properties of nano $CoAl_{2}O_{4}$ ceramic ink-jet ink. Ceram Int. 2015;41:9115-9121. 

  25. Cesarano J, Calvert PD. Freeforming objects with low-binder slurry. 2000. US 6027326A. 

  26. Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomater. 2007;28:2810-2820. 

  27. Miranda P, Saiz E, Gryn K, Tomsia AP. Sintering and robocasting of ${\beta}$ -tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater. 2006;2:457-466. 

  28. Martinez-Vazquez FJ, Perera FH, Miranda P, Pajares A, Guiberteau F. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Acta Biomater. 2010;6:4361-4368.2 

  29. Sachs E, Haggerty J, Cima M, Williams P. Three-dimensional printing methods. 1993. US6146567A. 

  30. Sachs E, Cima M, Williams P, Brancazio D, Cornie J. Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Eng Ind. 1992;114:481-488. 

  31. Will J, Melcher R, Treul C, Travitzky N, Kneser U, Polykandriotis E, Horch R, Greil P. Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J Mater Sci-Mater M. 2008;19:2781-2790. 

  32. Ke D, Bose S. Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing. Additive Manufacturing. 2018;22:111-117. 

  33. Ho H, Gibson I, Cheung W. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J Mater Process Tech. 1999;89:204-210. 

  34. Schmidt M, Pohle D, Rechtenwald T. Selective laser sintering of PEEK. CIRP Ann-Manuf Techn. 2007;56:205-208. 

  35. Tang HH. Direct laser fusing to form ceramic parts, Rapid Prototyping J. 2002;8:284-289. 

  36. Liu J, Zhang B, Yan C, Shi Y. The effect of processing parameters on characteristics of selective laser sintering dental glass-ceramic powder. Rapid Prototyping J. 2010;16:138-145. 

  37. Xiao HS, Wei L, Ping HS, Qing YS, Qing SW, Yu SS, Kai L, Wen GL. Selective laser sintering of aliphatic￾polycarbonate/hydroxyapatite composite scaffolds for medical applications. Int J Adv Manuf Tech. 2015; 81:15–25. 

  38. Lorrison J, Dalgarno K, Wood D. Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering, J Mater Sci-Mater M. 2005;16:775-781. 

  39. Goodridge RD, Wood DJ, Ohtsuki C, Dalgarno KW. Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering. Acta Biomater. 2007;3:221-231. 

  40. Meiners W, Wissenbach K, Gasser A. Selective laser sintering at melting temperature. 2001. US6215093B1 

  41. Hao L, Dadbakhsh S, Seaman O, Felstead M. Selective laser melting of a stainless steel and hydroxyapatite composite for load-bearing implant development. J Mater Process Tech. 2009;209:5793-5801. 

  42. Mercelis P, Kruth JP. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping J. 2006;12:254-265. 

  43. Kunieda M, Nakagawa T. Manufacturing of laminated deep drawing dies by laser beam cutting. Advanced Technology of Plasticity. 1984;1:520-525 

  44. Griffin C, Daufenbach J, McMillin S. Desktop manufacturing: LOM vs. pressing. Am Ceram Soc Bull. 1994;73:109-113. 

  45. Khatri B, Lappe K, Habedank M, Mueller T, Megnin C, Hanemann T. Fused deposition modeling of ABS-barium titanate composites: A simple route towards tailored dielectric devices. Polymers. 2018;10:(6):666. 

  46. Xu N, Ye X, Wei D, Zhong J, Chen Y, Xu G, He D. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. Acs Appl Mater Inter. 2014;6:14952-14963. 

  47. Sa M, Nguyen B, Moriarty R, Kamalitdinov T, Fisher J, Kim J. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications. Biotechnol Bioeng. 2018;115:989-999. 

  48. Bomze D, Schweiger J, Russmuller G, Ioannidis A. 3D-printing of high-strength and bioresorbable ceramics for dental and maxillofacial surgery applications - the LCM Process. Ceramic Applications. 2019;7:38-43. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로