$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

단일광자 검출기 기술개발 동향
Single Photon Detectors Technologies Development Trends for Quantum Information 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.35 no.4, 2020년, pp.21 - 33  

이욱재 (양자광학연구실) ,  심재식 (양자광학연구실) ,  윤천주 (양자광학연구실)

Abstract AI-Helper 아이콘AI-Helper

Single photon detector technologies have emerged as powerful tools in optical quantum information applications such as quantum communication, quantum information, and integrated quantum photonics. Owing to significant attempts in the previous decade at improving photon-counting detectors, several si...

주제어

표/그림 (8)

참고문헌 (51)

  1. A. Einstein, "Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt," Annalen der Physik, vol. 322, no. 6, 1905, pp. 132-148. 

  2. S. K. Liao et al., "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, no. 3, 2018, Article no. 030501. 

  3. F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, 2019, pp. 505-510. 

  4. A. Divochiy et al., "Superconducting nanowire photonnumber-resolving de tec tor at telecommunication wavelengths," Nature Photon,. vol. 2, 2008, pp. 302-306. 

  5. E. Pomarico et al., "Room temperature photon number resolving detector for infared wavelengths," Opt. Express, vol. 18, no. 10, 2010, pp. 10750-10759. 

  6. B. Calkins et al., "High quantum-efficiency photon-numberresolving detector for photonic on-chip information processing," Opt. Express, vol. 21, 2013, pp. 22657-22670. 

  7. G. A. Morton, "Photomultiplier for scintillation counting," RCA Rev., vol. 10, 1949, pp. 525-553. 

  8. K. Ekert., "Quantum Cryptography Based on Bell's Theorem," Phys. Rev. Lett., vol. 67, no. 6, 1991, pp. 661-663. 

  9. C. H. Nennett et al., "Experimental quantum cryptography," J. Cryptology, vol. 5, no. 3, 1992, pp. 3-28. 

  10. C. A. Armiento et al., "Impact ionization in (100)-, (110)-, and (111)-oriented InP avalanche photodiodes," Appl. Phys. Lett., vol. 43, no. 2, 1983, pp. 198-200. 

  11. S. G. Choi et al., "3-Dimensional LADAR Optical Detector Development in Geiger Mode Operation," Korean J. Optics Photonics, vol. 24, no. 4, 2013, pp. 176-183. 

  12. S. Cova et al., "Avalanche photodiodes and quenching circuits for single-photon detection," Appli. Opt., vol. 35, no. 12, 1996, pp. 1956-1976. 

  13. S. Johnson et al., "Analysis of Geiger-mode APD laser radars," Proc. SPIE, vol. 5086, 2003, pp. 359-368. 

  14. G. N. Gol'tsman et al., "Picosecond superconducting singlephoton optical detector," Appl. Phy. Lett., vol. 79, 2001, Article no. 705. 

  15. C. M. Natarajan et al., "Superconducting nanowire singlephoton detectors: physics and applications," Supercond. Sci. Technol. 25, 2012, p. 063001. 

  16. W. H. P. Pernice et al., "High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits," Nature Commun., vol. 3, 2012, Article no. 1325. 

  17. M. K. Akhlaghi et al., "Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation," Nature Commun., vol. 6, 2015, Article no. 8233. 

  18. https://www.picoquant.com/products/category/photoncounting-detectors/pma-hybrid-series-hybrid-photomultiplierdetector-assembly#specification 

  19. https://www.hamamatsu.com/resources/pdf/etd/NIRPMT_APPLI_TPMO1040E.pdf 

  20. https://marketing.idquantique.com/acton/attachment/11868/f-0238/1/-/-/-/-/ID120_Brochure.pdf 

  21. https://marketing.idquantique.com/acton/attachment/11868/f-0234/1/-/-/-/-/ID230_Brochure.pdf 

  22. A. E. Lita et al., "Counting near-infrared single photons with 95% efficiency," Opt. Express, vol. 16, 2008, pp. 3032-3040. 

  23. https://singlequantum.com/products/single-quantum-eos/ 

  24. H. Chun et al., "Handheld free space quantum key distribution with dynamic motion compensation," Opt. Express, vol. 25, 2017, pp. 6784-6795. 

  25. G. Ribordy et al., "Automated plug & play quantum key distribution," Electron Lett. vol. 34, 1998, pp. 2116-2117. 

  26. R. J. Hughes, G. L. Morgan, and C. G. Peterson, "Quantum key distribution over a 48km optical fibre network," J. Mod. Opt., vol. 47, 2000, pp. 533-547. 

  27. D. Stucki et al.,"Quantum key distribution over 67km with a plug&play system," New J. Phys., vol. 4, 2002, Article no. 41. 

  28. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122km of standard telecom fiber," Appl. Phys. Lett., vol. 84, 2004, Article no. 3762. 

  29. W.-Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett., vol. 91, 2003, Article no. 057901. 

  30. H.-K. Lo, X. Ma, and K. Chen,"Decoy State Quantum Key Distribution," Phys. Rev. Lett., vol. 94, 2005, Article no. 230504. 

  31. C. Z. Peng et al., "Experimental long-distance decoystate quantum key distribution based on polarization encoding," Phys. Rev. Lett., vol. 98, 2007, Article no. 010505. 

  32. N. Namekata et al., "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett., vol. 91, 2007, Article no. 011112. 

  33. Z. L. Yuan et al., "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett., vol. 92, 2008, Article no. 201104. 

  34. L. C. Comandar et al., "Gigahertz-gated InGaAs-InP singlephoton detector with detection efficiency exceeding 55% at 1550nm," J. Appl. Phys., vol. 117, 2015, Article no. 083109. 

  35. Z. Yuan et al., "10-Mb/s quantum key distribution," J. Lightwave Technol., vol. 36, 2018, pp. 3427-3433. 

  36. C. H. Bennett and G. Brassard, "Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working!," ACM Sigact News, vol. 20, 1989, pp. 78-80. 

  37. R. J. Hughes et al., "Practical free-space quantum key distribution over 10km in daylight and at night," New J. Phys., vol. 4, 2002, Article no. 43. 

  38. T. Schmitt-Manderbach et al., "Experimental demonstration of free-space decoy-state quantum key distribution over 144km," Phys. Rev. Lett., vol. 98, 2007, Article no. 010504. 

  39. S. Nauerth et al., "Air-to-ground quantum communication," Nature Photon., vol. 7, 2013, pp. 382-386. 

  40. S.-K. Liao et al., "Satellite-to-ground quantum key distribution," Nature, vol. 549, 2017, pp. 43-47. 

  41. S.-K. Liao et al., , "Satellite-relayed intercontinental quantum network," Phys. Rev. Lett., vol. 120, 2018, Article no. 030501. 

  42. I. Khan et al., "Satellite-Based QKD," Opt. Photon. News, vol. 29, 2018, pp. 26-33. 

  43. S. Liao et al., "Long-distance free-space quantum key distribution in daylight towards inter-satellite communication," Nature Photon., vol. 11, 2017, pp. 509-513. 

  44. H. Takesue et al., "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photon., vol. 1, no. 6, 2007, pp. 343-348. 

  45. M. Sasaki et al., "Field test of quantum key distribution in the Tokyo QKD Network," Opt. Exp., vol. 19, no. 11, 2011, pp. 10387-10409. 

  46. H. Shibata, T. Honjo, and K. Shimizu, "Quantum key distribution over a 72dB channel loss using ultralow dark count superconducting single-photon detectors," Opt. Lett., vol.39, no.17, 2014, pp. 5078-5081. 

  47. Y.-L. Tang et al., "Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network," Phys. Rev. X, vol. 6, no. 1, 2016, Article no. 011024. 

  48. M. Lucamarini et al., "Overcoming the rate-distance limit of quantum key distribution without quantum repeaters," Nature, vol. 557, 2018, pp. 400-403. 

  49. J.-P. Chen et al.,"Sending-or-Not-Sending with Independent Lasers: Secure Twin-Field Quantum Key Distribution over 509km," Phys. Rev. Lett., vol. 124, 2020, Article no. 070501. 

  50. G. Reithmaier et al., "On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors," Scientific Reports, vol. 3, 2013, Article no. 1901. 

  51. E. Knillm R, Laflamme, and G. J. Milburn, "A cheme for efficient quantum computation with linear optics," Nature, vol. 409, 2001, pp. 46-52. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로