$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 방사선 돌연변이 육종기술을 통한 고 아미노산 함유 김(Pyropia yezoensis) 돌연변이 개발
Development of Pyropia yezoensis Mutant with Improved Amino Acid Content Using Gamma Rays 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.54 no.6, 2021년, pp.982 - 988  

이학증 (국립수산과학원 수산종자육종연구소)

Abstract AI-Helper 아이콘AI-Helper

Gamma irradiation is one of the simple methods used to induce mutagenesis. Therefore, it is widely used for the development of breeding lineages of plants and algae. In this study, it was developed a new variety of Pyropia yezoensis using gamma irradiation. It was applied a dose of 1 kGy and named t...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 이에, 본 연구에서는 방사선 조사를 통하여 방사무늬김의 새로운 품종을 개발하고자 하였으며 대조군과 선별된 신품종에 대한 영양성분과 항산화 활성 조사를 수행하였다. 또한 앞으로의 김 돌연변이 육종방법에 대한 기초자료로서 제공하고자 한다.
  • 이에, 본 연구에서는 방사선 조사를 통하여 방사무늬김의 새로운 품종을 개발하고자 하였으며 대조군과 선별된 신품종에 대한 영양성분과 항산화 활성 조사를 수행하였다. 또한 앞으로의 김 돌연변이 육종방법에 대한 기초자료로서 제공하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. Baek SY, Kim SJ, Kim DH and Kim MR. 2019. Comparison of quality characteristics and antioxidant activities between Porphyra yezoensis and Porphyra dentata in Korea. Korean J Soc Food Sci Nutr 48, 1233-1243. https://doi.org/10.3746/jkfn.2019.48.11.1233. 

  2. Benzie IFF and Strain JJ. 1996. The ferric reducing ability of palsma (FRAP) as a measure of "Antioxidant power": The FRAP assay. Anal Biochem 239, 70-79. https://doi.org/10.1006/abio.1996.0292. 

  3. Cho SH, Yoo SC, Zhang H, Pandeya D, Koh HJ, Hwang JY, Kim GT and Paek NC. 2013. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol 198, 1071-1084. http://doi.org/10.1111/nph.12231. 

  4. Choi JI. 2020. Amino acid composition and antioxidative activities of mutant Pyropia yezoensis. Korean J Fish Aquat Sci 53, 524-529. https://doi.org/10.5657/KFAS.2020.0524. 

  5. Dawczynski C, Schubert R and Jahresis G. 2007. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103, 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041. 

  6. Dewanto V, Xianzhong W and Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50, 4959-4964. https://doi.org/10.1021/jf0255937. 

  7. Ding H, Zhang B and Yan X. 2016. Isolation and characterization of a heat-resistant strain with high yield of Pyropia yezoensis Ueda (Bangiales, Rhodophyta). Aquac Fish 1, 24-33. https://doi.org/10.1016/j.aaf.2016.09.001. 

  8. Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE and Potentier MS. 2011. The Arabidopsis C2H2 zinc finger Indeterminate Domain1/Enhydrous promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23, 1772-1794. https://doi.org/10.1105/tpc.111.085134. 

  9. Furst P and Stehle P. 2004. What are the essential elements needed for the determination of amino acid requirements in humans?. J Nutr 134, 1558S-1565S. https://doi.org/10.1093/jn/134.6.1558S. 

  10. Giri J, Vij S, Dansana PK and Tyagi AK. 2011. Rice A20/AN1 zinc finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol 191, 721-732. https://doi.org/10.1111/j.1469-8137.2011.03740.x. 

  11. Hwang EK, Yotsukura N, Pang SJ, Su L and Shan TF. 2019. Seaweed breeding programs and progress in eastern Asian countries. Phycologia 58, 484-495. https://doi.org/10.1080/00318884.2019.1639436. 

  12. Hwang MS, Kim SO, Lee YS, Park EJ, Kim SC, Ha DS, Gong YG, Baek JM and Choi HG. 2010. Isolation and characterization of pure lines of pigmentation and morphological mutants in Porphyra tenera Kjellman (Bangiales, Rhodophyta). Korean J Fish Aquat Sci 43, 495-502. https://doi.org/10.5657/kfas.2010.43.5.495. 

  13. Inoue N, Yamano N, Sakata K, Nagao, Hama Y and Yanagita T. 2009. The sulfated polysaccharide porphyran reduces apolipoprotein B100 secretion and lipid synthesis in HepG2 cell. Biosci Biotechnol Biochem 73, 447-449. https://doi.org/10.1271/bbb.80688. 

  14. Jiang H, Zou D, Lou W, Deng Y and Zeng X. 2018. Effects of seawater acidification and alkalization on the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta), grown under different irradiance conditions. Algal Res 31, 413-420. https://doi.org/10.1016/j.algal.2018.02.033. 

  15. Jimenez-Escrig A and Goni Cambrodon I. 1999. Nutritional evaluation and physiological effects of edinle seaweeds. Arch Latinoam Nutr 49, 114-120. 

  16. Jung SM, Kang SG, Kim KT, Lee HJ, Kim AR and Shin HW. 2015. The analysis of proximate composition, minerals and amino acid content of a red alga Pyropia dentata by cultivation sites1a. Korean J Environ Ecol 29, 1-6. https://doi.org/10.13047/KJEE.2015.29.1.001. 

  17. Jung HJ, Kim DH, Jeong MH, Lim CW, Shim KB and Cho YJ. 2017. Mineral analysis and nutritional evaluation according to production area of laver Porphyra tenera, Japanese kelp Saccharina japonicus, sea mustard Undaria pinnatifida and hijiki Sargassum fusiforme in Korea. J Fish Mar Sci Educ 29, 1624-1632. http://dx.doi.org/10.13000/JFMSE.2017.29.5.1624. 

  18. Kim H and Lee SW. 2007. The effects of quercetin on paraquat induced cell damage. Korean J Soc Emerg Med 18, 41-48. 

  19. Kim KW, Hwang JH, Oh MJ,Kim MY, Choi MR and Park WM. 2014. Studies on the major nutritional components of commercial dried lavers Porphyra yezoensis cultivated in Korea. Korean J Food Preserv 21, 702-709. https://doi.org/10.11002/kjfp.2014.21.5.702. 

  20. KMI (Korea Marine Institute, Ministry of Oceans and Fisheries). 2020. Fisheries statistics. Retrieved from https://kfishinfo.co.kr on Jul 14, 2021. 

  21. Kwak YH, Bai SC and Kim DJ. 2010. Estimated availability and major minerals (Ca, P and Mg) contents bound neutral detergent fiber (NDF) of seaweeds. Korean J Soc Food Sci Nutr 39, 1073-1077. https://doi.org/10.3746/jkfn.2010.39.7.1073. 

  22. Kwon MJ and Nam TJ. 2006. Porphyra induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79, 1956-1962. https://doi.org/10.1016/j.lfs.2006.06.031. 

  23. Lee HJ, Choi JI and Choi SJ. 2012. Physiological activities and amino acid compositions of Korean dried laver Porphyra Products. Korean J Fish Aquat Sci 45, 409-413. https://doi.org/10.5657/KFAS.2012.0409. 

  24. Lee HJ, Park EJ and Choi JI. 2019. Isolation, morphological characteristics and proteomic profile analysis of thermos-tolerant Pyropia yezoensis mutant in response to high-temperature stress. Ocean Sci J 54, 65-78. https://doi.org/10.1007/s12601-018-0060-9. 

  25. Lee KH, Song SH and Jeong IH. 1987. Quality changes of dried lavers during processing and storage. 1. Quality evaluation of different grades of dried lavers and its changes during storage. J Kor Fish Soc 20, 408-418. 

  26. Li YX, Wang GC, Xu P, Fan XL, Niu JF and Zhou BC. 2008. Induction and characterization of green pigmentation mutant in Porphyra yezoensis Ueda. Aquaculture 282, 117-123. https://doi.org/10.1016/j.aquaculture.2008.05.026. 

  27. Lim SN, Cheung PCK, Ooi VEC and Ang PO. 2002. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50, 3862-3866. https://doi.org/10.1021/jf020096b. 

  28. Ma Y. 2019. Characterization of a high-growth-rate mutant strain of Pyropia yezoensis using physiology measurement and transcriptome analysis. J Phycol 55, 651-662. https://doi.org/10.1111/jpy.12842. 

  29. Mouritsen OG, Duelund L, Petersen MA, Hartmann AL and Frost MB. 2019. Umami taste, free amino acid composition, and volatile compounds of brown seaweeds. J Appl Phycol 31, 1213-1232. https://doi.org/10.1007/s10811-018-1632-x. 

  30. Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T and Okada K. 2012. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24, 519-535. https://doi.org/10.1105/tpc.111.092858. 

  31. Nardmann J, Ji J, Werr W and Scanlon MJ. 2004. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131, 2827-2839. https://doi.org/10.1242/dev.01164. 

  32. Niwa K, Hayashi Y, Abe T and Aruga Y. 2009. Induction and isolation of pigmentation mutants of Porphyra yezoensis (Bangiales, Rhodophyta) by heavy-ion beam irradiation. Phycol Res 57, 194-202. https://doi.org/10.1111/j.1440-1835.2009.00539.x. 

  33. Niwa K, Yamamoto T, Furuita H and Abe T. 2011. Mutation breeding in the marine crop Porphyra yezoensis (Bangiales, Rhodophyta): cultivation experiment of the artificial red mutant isolated by heavy-ion beam mutagenesis. Aquaculture 314, 182-187. https://doi.org/10.1016/j.aquaculture.2011.02.007. 

  34. Park CK, Park CH and Park JN. 2001. Extractive nitrogenous constituents of dried laver Porphyra yezoensis. Korean J Fish Soc 34, 394-402. 

  35. Park EJ and Choi JI. 2018. Resistance and proteomic response of microalgae to ionizing irradiation. Biotechnol Biopr Eng 23, 704-709. http://doi.org/10.1007/s12257-018-0468-1. 

  36. Park SJ and Choi JI. 2020. De novo transcriptome analysis of high growth rate Pyropia yezoensis (Bangiales, Rhodophyta) mutant with high utilization nitrogen. Acta Bot Croat 79, 201-211. http://doi.org/10.37427/botcro-2020-026. 

  37. Park WM, Kang DS and Bae TJ. 2014. Studies on organic acid, vitamin and free sugar contents of commercial dried lavers Porphyra yezoensis cultivated in Korea. J Korean Soc Food Sci Nutr 43, 172-177. https://doi.org/10.3746/jkfn.2014.43.1.172. 

  38. Ruiz-Capillas C and Moral A. 2001. Changes in free amino acids during chilled storage of hake (Merluccius merluccius, L.) in controlled atmospheres and their use as a quality control index. Eur Food Res Technol 212, 302-307. http://doi.org/10.1007/s002170000232. 

  39. Shin DM, An SR, In SK and Koo JG. 2013. Seasonal variation in the dietary fiber, amino acid and fatty acid contents of Porphyra yezoensis. Korean J Fish Aquat Sci 46, 337-342. https://doi.org/10.5657/KFAS.2013.0337. 

  40. Shin YJ, Min SK, Kang YD, Lim JM, Park EJ, Hwang MS, Choi DW, Ahn JW, Park YI and Jung WJ. 2019. Characterization of high temperature-tolerant strains of Pyropia yezoensis. Plant Biotechnol Rep 12, 365-373. https://doi.org/10.1007/s11816-018-0499-2. 

  41. Tsuge K, Kabe M, Yoshimura T, Sumi T, Tachibana H and Yamada K. 2004. Dietary effects of porphyran from Porphyra yezoensis in growth and lipid metabolism of Spraguedawley rats. Food Sci Technol Res 10, 147-151. https://doi.org/10.3136/fstr.10.147. 

  42. Van Loo, EJ, Hoefkens C and Verbeke W. 2017. Healthy, sustainable and plant-based eating: Perceived (mis) match and involvement-based consumer segments as targets for future policy. Food Policy 69, 46-57. https://doi.org/10.1016/j.foodpol.2017.03.001. 

  43. Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS and Gerats T. 2009. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell 21, 2269-2283. https://doi.org/10.1105/tpc.109.065862. 

  44. Watanabe K and Sato Y. 1974. Meat flavor. Japan J Zootech Sci 45, 113-128. 

  45. Yan XH, Fujita Y and Aruga Y. 2000. Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta). J Appl Phycol 12, 69-81. 

  46. Yoshie Y, Suzuki T, Shirai T, Hirano T and Lee EH. 1993. Dietary fiber, minerals, free amino acids and fatty acid compositions in dried Nori of several culture places in Korea. J Tokyo Univ Fish 80, 197-203. 

  47. Zhao F, Du F, Oliveri H, Zhou L, Ali O, Chen W, Feng S, Wang Q, Lu S, Long M, Schneider K, Sampathkumar A, Godin C, Traas J and Jino Y. 2020. Microtubule-mediated wall anisotropy contributes to leaf blade flattening. Curr Biol 30, 3972-2985. https://doi.org/10.1016/j.cub.2020.07.076. 

  48. Zhang Z, Runions A, Mentink RA, Kierzkowski D, Karady M, Hashemi B, Huijser P, Strauss S, Gan X, Ljung K and Tsiantis M. 2020. A WOX/auxin biosynthesis module controls growth to shape leaf form. Curr Biol 30, 4857-4868. https://doi.org/10.1016/j.cub.2020.09.037. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로