$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Danger-Associated Peptide PEP1 Directs Cellular Reprogramming in the Arabidopsis Root Vascular System 원문보기

Molecules and cells, v.44 no.11, 2021년, pp.830 - 842  

Dhar, Souvik (School of Biological Sciences, College of Natural Science, Seoul National University) ,  Kim, Hyoujin (School of Biological Sciences, College of Natural Science, Seoul National University) ,  Segonzac, Cecile (Department of Agriculture, Forestry and Bioresources, Seoul National University) ,  Lee, Ji-Young (School of Biological Sciences, College of Natural Science, Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

When perceiving microbe-associated molecular patterns (MAMPs) or plant-derived damage-associated molecular patterns (DAMPs), plants alter their root growth and development by displaying a reduction in the root length and the formation of root hairs and lateral roots. The exogenous application of a M...

주제어

참고문헌 (53)

  1. Abdul Malik N.A. Kumar I.S. Nadarajah K. 2020 Elicitor and receptor molecules: orchestrators of plant defense and immunity Int. J. Mol. Sci. 21 963 10.3390/ijms21030963 32024003 

  2. Aichinger E. Kornet N. Friedrich T. Laux T. 2012 Plant stem cell niches Annu. Rev. Plant Biol. 63 615 636 10.1146/annurev-arplant-042811-105555 22404469 

  3. Aida M. Beis D. Heidstra R. Willemsen V. Blilou I. Galinha C. Nussaume L. Noh Y.S. Amasino R. Scheres B. 2004 The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche Cell 119 109 120 10.1016/j.cell.2004.09.018 15454085 

  4. Bartels S. Boller T. 2015 Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development J. Exp. Bot. 66 5183 5193 10.1093/jxb/erv180 25911744 

  5. Bartels S. Lori M. Mbengue M. van Verk M. Klauser D. Hander T. Boni R. Robatzek S. Boller T. 2013 The family of Peps and their precursors in Arabidopsis: differential expression and localization but similar induction of pattern-triggered immune responses J. Exp. Bot. 64 5309 5321 10.1093/jxb/ert330 24151300 

  6. Beck M. Wyrsch I. Strutt J. Wimalasekera R. Webb A. Boller T. Robatzek S. 2014 Expression patterns of FLAGELLIN SENSING 2 map to bacterial entry sites in plant shoots and roots J. Exp. Bot. 65 6487 6498 10.1093/jxb/eru366 25205577 

  7. Bishopp A. Help H. El-Showk S. Weijers D. Scheres B. Friml J. Benkova E. Mahonen A.P. Helariutta Y. 2011 A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots Curr. Biol. 21 917 926 10.1016/j.cub.2011.04.017 21620702 

  8. Bjornson M. Pimprikar P. Nürnberger T. Zipfel C. 2021 The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity Nat. Plants 7 579 586 10.1038/s41477-021-00874-5 33723429 

  9. Chaiwanon J. Wang W. Zhu J.Y. Oh E. Wang Z.Y. 2016 Information integration and communication in plant growth regulation Cell 164 1257 1268 10.1016/j.cell.2016.01.044 26967291 

  10. De Coninck B. Timmermans P. Vos C. Cammue B.P.A. Kazan K. 2015 What lies beneath: belowground defense strategies in plants Trends Plant Sci. 20 91 101 10.1016/j.tplants.2014.09.007 25307784 

  11. De Rybel B. Mahonen A.P. Helariutta Y. Weijers D. 2016 Plant vascular development: from early specification to differentiation Nat. Rev. Mol. Cell Biol. 17 30 40 10.1038/nrm.2015.6 26580717 

  12. Dolan L. Janmaat K. Willemsen V. Linstead P. Poethig S. Roberts K. Scheres B. 1993 Cellular organisation of the Arabidopsis thaliana root Development 119 71 84 10.1242/dev.119.1.71 8275865 

  13. Emonet A. Zhou F. Vacheron J. Heiman C.M. Tendon V.D. Ma K.W. Schulze-Lefert P. Keel C. Geldner N. 2021 Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria Curr. Biol. 31 1012 1028 e7 10.1016/j.cub.2020.12.048 33508217 

  14. Gimenez-Ibanez S. Ntoukakis V. Rathjen J.P. 2009 The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis Plant Signal. Behav. 4 539 541 10.4161/psb.4.6.8697 19816132 

  15. Hacquard S. Spaepen S. Garrido-Oter R. Schulze-Lefert P. 2017 Interplay between innate immunity and the plant microbiota Annu. Rev. Phytopathol. 55 565 589 10.1146/annurev-phyto-080516-035623 28645232 

  16. Hou S. Wang X. Chen D. Yang X. Wang M. Turrà D. Di Pietro A. Zhang W. 2014 The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7 PLoS Pathog. 10 e1004331 10.1371/journal.ppat.1004331 25188390 

  17. Huffaker A. Pearce G. Ryan C.A. 2006 An endogenous peptide signal in Arabidopsis activates components of the innate immune response Proc. Natl. Acad. Sci. U. S. A. 103 10098 10103 10.1073/pnas.0603727103 16785434 

  18. Imlau A. Truernit E. Sauer N. 1999 Cell-to-cell and long-distance trafficking of the green fluorescent protein in the phloem and symplastic unloading of the protein into sink tissues Plant Cell 11 309 322 10.1105/tpc.11.3.309 10072393 

  19. Jang G. Chang S.H. Um T.Y. Lee S. Kim J.K. Choi Y.D. 2017 Antagonistic interaction between jasmonic acid and cytokinin in xylem development Sci. Rep. 7 10212 10.1038/s41598-017-10634-1 28860478 

  20. Jang G. Choi Y.D. 2018 Drought stress promotes xylem differentiation by modulating the interaction between cytokinin and jasmonic acid Plant Signal. Behav. 13 e1451707 10.1080/15592324.2018.1451707 29533132 

  21. Jing Y. Zheng X. Zhang D. Shen N. Wang Y. Yang L. Fu A. Shi J. Zhao F. Lan W. 2019 Danger-associated peptides interact with PIN-dependent local auxin distribution to inhibit root growth in Arabidopsis Plant Cell 31 1767 1787 10.1105/tpc.18.00757 31123046 

  22. Kim H. Zhou J. Kumar D. Jang G. Ryu K.H. Sebastian J. Miyashima S. Helariutta Y. Lee J.Y. 2020 SHORTROOT-mediated intercellular signals coordinate phloem development in Arabidopsis roots Plant Cell 32 1519 1535 10.1105/tpc.19.00455 32111671 

  23. Kurihara D. Mizuta Y. Sato Y. Higashiyama T. 2015 ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging Development 142 4168 4179 10.1242/dev.127613 26493404 

  24. Lee J.Y. Colinas J. Wang J.Y. Mace D. Ohler U. Benfey P.N. 2006 Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots Proc. Natl. Acad. Sci. U. S. A. 103 6055 6060 10.1073/pnas.0510607103 16581911 

  25. Ma C. Guo J. Kang Y. Doman K. Bryan A.C. Tax F.E. Yamaguchi Y. Qi Z. 2014 AtPEPTIDE RECEPTOR2 mediates the AtPEPTIDE1‐induced cytosolic Ca2+ rise, which is required for the suppression of Glutamine Dumper gene expression in Arabidopsis roots J. Integr. Plant Biol. 56 684 694 10.1111/jipb.12171 24450616 

  26. Mähönen A.P. Bishopp A. Higuchi M. Nieminen K.M. Kinoshita K. Törmäkangas K. Ikeda Y. Oka A. Kakimoto T. Helariutta Y. 2006 Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development Science 311 94 98 10.1126/science.1118875 16400151 

  27. Millet Y.A. Danna C.H. Clay N.K. Songnuan W. Simon M.D. Werck-Reichhart D. Ausubel F.M. 2010 Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns Plant Cell 22 973 990 10.1105/tpc.109.069658 20348432 

  28. Nürnberger T. Kemmerling B. J.A. Roberts 2018 Pathogen‐associated molecular patterns (PAMP) and PAMP‐triggered immunity Annual Plant Reviews Online John Wiley & Sons Hoboken, NJ https://doi.org/10.1002/9781119312994.apr0362 10.1002/9781119312994.apr0362 

  29. Okada K. Kubota Y. Hirase T. Otani K. Goh T. Hiruma K. Saijo Y. 2021 Uncoupling root hair formation and defence activation from growth inhibition in response to damage‐associated Pep peptides in Arabidopsis thaliana New Phytol. 229 2844 2858 10.1111/nph.17064 33131060 

  30. Pascale A. Proietti S. Pantelides I.S. Stringlis I.A. 2020 Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion Front. Plant Sci. 10 1741 10.3389/fpls.2019.01741 32038698 

  31. Perini S. Mambro R. Sabatini S. 2012 Growth and development of the root apical meristem Curr. Opin. Plant Biol. 15 17 23 10.1016/j.pbi.2011.10.006 22079783 

  32. Poncini L. Wyrsch I. Dénervaud Tendon V. Vorley T. Boller T. Geldner N. Métraux J.P. Lehmann S. 2017 In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer PLoS One 12 e0185808 10.1371/journal.pone.0185808 28973025 

  33. Ramachandran P. Augstein F. Mazumdar S. Van Nguyen T. Minina E.A. Melnyk C.W. Carlsbecker A. 2021 Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis Curr. Biol. 31 3153 3161 e5 10.1016/j.cub.2021.04.057 34043949 

  34. Ramachandran P. Augstein F. Nguyen V. Carlsbecker A. 2020 Coping with water limitation: hormones that modify plant root xylem development Front. Plant Sci. 11 570 10.3389/fpls.2020.00570 32499804 

  35. Rich-Griffin C. Eichmann R. Reitz M.U. Hermann S. Woolley-Allen K. Brown P.E. Wiwatdirekkul K. Esteban E. Pasha A. Kogel K.H. 2020 Regulation of cell type-specific immunity networks in Arabidopsis roots Plant Cell 32 2742 2762 10.1105/tpc.20.00154 32699170 

  36. Sabatini S. Heidstra R. Wildwater M. Scheres B. 2003 SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem Genes Dev. 17 354 358 10.1101/gad.252503 12569126 

  37. Sarkar A.K. Luijten M. Miyashima S. Lenhard M. Hashimoto T. Nakajima K. Scheres B. Heidstra R. Laux T. 2007 Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers Nature 446 811 814 10.1038/nature05703 17429400 

  38. Scheres B. 2007 Stem-cell niches: nursery rhymes across kingdoms Nat. Rev. Mol. Cell Biol. 8 345 354 10.1038/nrm2164 17450175 

  39. Sebastian J. Ryu K.H. Zhou J. Tarkowská D. Tarkowski P. Cho Y.H. Yoo S.D. Kim E.S. Lee J.Y. 2015 PHABULOSA controls the quiescent center-independent root meristem activities in Arabidopsis thaliana PLoS Genet. 11 e1004973 10.1371/journal.pgen.1004973 25730098 

  40. Seo M. Kim H. Lee J.Y. 2020 Information on the move: vascular tissue development in space and time during postembryonic root growth Curr. Opin. Plant Biol. 57 110 117 10.1016/j.pbi.2020.08.002 32905917 

  41. Seo M. Lee J.Y. 2021 Dissection of functional modules of AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN 4 in the development of the root xylem Front. Plant Sci. 12 632078 10.3389/fpls.2021.632078 33889164 

  42. Sevilem I. Miyashima S. Helariutta Y. 2013 Cell-to-cell communication via plasmodesmata in vascular plants Cell Adh. Migr. 7 27 32 10.4161/cam.22126 23076211 

  43. Smet W. Sevilem I. de Luis Balaguer M.A. Wybouw B. Mor E. Miyashima S. Blob B. Roszak P. Jacobs T.B. Boekschoten M. 2019 DOF2. 1 controls cytokinin-dependent vascular cell proliferation downstream of TMO5/LHW Curr. Biol. 29 520 529 10.1016/j.cub.2018.12.041 30686737 

  44. Smetana O. Makila R. Lyu M. Amiryousefi A. Rodriguez F.S. Wu M.F. Sole-Gil A. Gavarron M.L. Siligato R. Miyashima S. 2019 High levels of auxin signalling define the stem-cell organizer of the vascular cambium Nature 565 485 489 10.1038/s41586-018-0837-0 30626967 

  45. Stadler R. Sauer N. 1996 The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells Bot. Acta 109 299 306 10.1111/j.1438-8677.1996.tb00577.x 

  46. Wendrich J.R. Moller B.K. Li S. Saiga S. Sozzani R. Benfey P.N. De Rybel B. Weijers D. 2017 Framework for gradual progression of cell ontogeny in the Arabidopsis root meristem Proc. Natl. Acad. Sci. U. S. A. 114 E8922 E8929 10.1073/pnas.1707400114 28973915 

  47. Yamaguchi Y. Huffaker A. 2011 Endogenous peptide elicitors in higher plants Curr. Opin. Plant Biol. 14 351 357 10.1016/j.pbi.2011.05.001 21636314 

  48. Yamaguchi Y. Huffaker A. Bryan A.C. Tax F.E. Ryan C.A. 2010 PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis Plant Cell 22 508 522 10.1105/tpc.109.068874 20179141 

  49. Ye L. Wang X. Lyu M. Siligato R. Eswaran G. Vainio L. Blomster T. Zhang J. Mähönen A.P. 2021 Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes Curr. Biol. 31 3365 3373 e7 10.1016/j.cub.2021.05.036 34129827 

  50. Zhang J. Eswaran G. Alonso-Serra J. Kucukoglu M. Xiang J. Yang W. Elo A. Nieminen K. Damén T. Joung J.G. 2019 Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots Nat. Plants 5 1033 1042 10.1038/s41477-019-0522-9 31595065 

  51. Zhou F. Emonet A. Tendon V.D. Marhavy P. Wu D. Lahaye T. Geldner N. 2020 Co-incidence of damage and microbial patterns controls localized immune responses in roots Cell 180 440 453 10.1016/j.cell.2020.01.013 32032516 

  52. Zhou J. Wang X. Lee J.Y. Lee J.Y. 2013 Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning Plant Cell 25 187 201 10.1105/tpc.112.102210 23335615 

  53. Zipfel C. Robatzek S. Navarro L. Oakeley E.J. Jones J.D.G. Felix G. Boller T. 2004 Bacterial disease resistance in Arabidopsis through flagellin perception Nature 428 764 767 10.1038/nature02485 15085136 

LOADING...

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로